1
|
Saakre M, Jaiswal S, Rathinam M, Raman KV, Tilgam J, Paul K, Sreevathsa R, Pattanayak D. Host-Delivered RNA Interference for Durable Pest Resistance in Plants: Advanced Methods, Challenges, and Applications. Mol Biotechnol 2024; 66:1786-1805. [PMID: 37523020 DOI: 10.1007/s12033-023-00833-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Insect-pests infestation greatly affects global agricultural production and is projected to become more severe in upcoming years. There is concern about pesticide application being ineffective due to insect resistance and environmental toxicity. Reduced effectiveness of Bt toxins also made the scientific community shift toward alternative strategies to control devastating agricultural pests. With the advent of host-delivered RNA interference, also known as host-induced gene silencing, targeted insect genes have been suppressed through genetic engineering tools to deliver a novel insect-pest resistance strategy for combating a number of agricultural pests. This review recapitulates the possible mechanism of host-delivered RNA interference (HD-RNAi), in particular, the silencing of target genes of insect-pests. We emphasize the development of the latest strategies against evolving insect targets including designing of artificial microRNAs, vector constructs, and the benefit of using plastid transformation to transform target RNA-interfering genes. Advantages of using HD-RNAi over other small RNA delivery modes and also the supremacy of HD-RNAi over the CRISPR-Cas system particularly for insect resistance have been described. However, the broader application of this technology is restricted due to its several limitations. Using artificial miRNA designs, the host-delivered RNAi + Bt combinatorial approach and chloroplast transformation can overcome limitations of RNAi. With careful design and delivery approaches, RNAi promises to be extremely valuable and effective plant protection strategy to attain durable insect-pest resistance in crops.
Collapse
Affiliation(s)
- Manjesh Saakre
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Sandeep Jaiswal
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
- ICAR-Research Complex for NEH Region, Umiam, Meghalaya- 793103, India
| | - Maniraj Rathinam
- ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - K Venkat Raman
- ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Jyotsana Tilgam
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Krishnayan Paul
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Debasis Pattanayak
- ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
2
|
Zhang M, Zhang X, Chen T, Liao Y, Yang B, Wang G. RNAi-mediated pest control targeting the Troponin I (wupA) gene in sweet potato weevil, Cylas formicarius. INSECT SCIENCE 2024. [PMID: 38863245 DOI: 10.1111/1744-7917.13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024]
Abstract
The sweet potato weevil (Cylas formicarius) is a critical pest producing enormous global losses in sweet potato crops. Traditional pest management approaches for sweet potato weevil, primarily using chemical pesticides, causes pollution, food safety issues, and harming natural enemies. While RNA interference (RNAi) is a promising environmentally friendly approach to pest control, its efficacy in controlling the sweet potato weevil has not been extensively studied. In this study, we selected a potential target for controlling C. formicarius, the Troponin I gene (wupA), which is essential for musculature composition and crucial for fundamental life activities. We determined that wupA is abundantly expressed throughout all developmental stages of the sweet potato weevil. We evaluated the efficiency of double-stranded RNAs in silencing the wupA gene via microinjection and oral feeding of sweet potato weevil larvae at different ages. Our findings demonstrate that both approaches significantly reduced the expression of wupA and produced high mortality. Moreover, the 1st instar larvae administered dswupA exhibited significant growth inhibition. We assessed the toxicity of dswupA on the no-target insect silkworm and assessed its safety. Our study indicates that wupA knockdown can inhibit the growth and development of C. formicarius and offer a potential target gene for environmentally friendly control.
Collapse
Affiliation(s)
- Mengjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaxuan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Tingting Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yonglin Liao
- Institute of Plant Protection, Guangdong Academy of Agricultural Science, Guangdong Provincial Key Laboratory High Technology for Plant Protection, Guangzhou, China
| | - Bin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| |
Collapse
|
3
|
Nien YC, Vanek A, Axtell MJ. Trans-Species Mobility of RNA Interference between Plants and Associated Organisms. PLANT & CELL PHYSIOLOGY 2024; 65:694-703. [PMID: 38288670 DOI: 10.1093/pcp/pcae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/09/2024] [Accepted: 01/24/2024] [Indexed: 05/31/2024]
Abstract
Trans-species RNA interference (RNAi) occurs naturally when small RNAs (sRNAs) silence genes in species different from their origin. This phenomenon has been observed between plants and various organisms including fungi, animals and other plant species. Understanding the mechanisms used in natural cases of trans-species RNAi, such as sRNA processing and movement, will enable more effective development of crop protection methods using host-induced gene silencing (HIGS). Recent progress has been made in understanding the mechanisms of cell-to-cell and long-distance movement of sRNAs within individual plants. This increased understanding of endogenous plant sRNA movement may be translatable to trans-species sRNA movement. Here, we review diverse cases of natural trans-species RNAi focusing on current theories regarding intercellular and long-distance sRNA movement. We also touch on trans-species sRNA evolution, highlighting its research potential and its role in improving the efficacy of HIGS.
Collapse
Affiliation(s)
- Ya-Chi Nien
- Plant Biology Intercollege Ph.D. Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Allison Vanek
- Bioinformatics and Genomics Ph.D. Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michael J Axtell
- Plant Biology Intercollege Ph.D. Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Ph.D. Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
4
|
Das PK, Panda G, Patra K, Jena N, Dash M. The role of polyplexes in developing a green sustainable approach in agriculture. RSC Adv 2022; 12:34463-34481. [PMID: 36545618 PMCID: PMC9709925 DOI: 10.1039/d2ra06541j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Rise in global population has increased the food demands and thus the competition among farmers to produce more and more. In the race to obtain higher productivity, farmers have resorted to injudicious farming practices that include the reckless use of nitrogenous fertilizers and intensive cropping on farmlands. Such practices have paved the path for large scale infestations of crops and plants by pests thus affecting the plant productivity and crop vigour. There are several traditional techniques to control pest infestations in plants such as the use of chemical or bio-pesticides, and integrated pest management practices which face several drawbacks. Delivery of gene/nucleic acid in plants through genetic engineering approaches is a more sustainable and effective method of protection against pests. The technology of RNA interference (RNAi) provides a sustainable solution to counter pest control problems faced by other traditional techniques. The RNAi technique involves delivery of dsDNA/dsRNA or other forms of nucleic acids into target organisms thereby bringing about gene silencing. However, RNAi is also limited to its use because of their susceptibility to degradation wherein the use of cationic polymers can provide a tangible solution. Cationic polymers form stable complexes with the nucleic acids known as "polyplexes", which may be attributed to their high positive charge densities thus protecting the exogenous nucleic acids from extracellular degradation. The current paper focuses on the utility of nucleic acids as a sustainable tool for pest control in crops and the use of cationic polymers for the efficient delivery of nucleic acids in pests thus protecting the plant from infestations.
Collapse
Affiliation(s)
| | | | | | - Nivedita Jena
- Institute of Life Sciences, DBT-ILSBhubaneswarOdishaIndia
| | - Mamoni Dash
- Institute of Life Sciences, DBT-ILSBhubaneswarOdishaIndia
| |
Collapse
|
5
|
Li X, Liu X, Lu W, Yin X, An S. Application progress of plant-mediated RNAi in pest control. Front Bioeng Biotechnol 2022; 10:963026. [PMID: 36003536 PMCID: PMC9393288 DOI: 10.3389/fbioe.2022.963026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 01/09/2023] Open
Abstract
RNA interference (RNAi)-based biopesticides are novel biologic products, developed using RNAi principles. They are engineered to target genes of agricultural diseases, insects, and weeds, interfering with their target gene expression so as to hinder their growth and alleviate their damaging effects on crops. RNAi-based biopesticides are broadly classified into resistant plant-based plant-incorporated protectants (PIPs) and non-plant-incorporated protectants. PIP RNAi-based biopesticides are novel biopesticides that combine the advantages of RNAi and resistant transgenic crops. Such RNAi-based biopesticides are developed through nuclear or plastid transformation to breed resistant plants, i.e., dsRNA-expressing transgenic plants. The dsRNA of target genes is expressed in the plant cell, with pest and disease control being achieved through plant-target organism interactions. Here, we review the action mechanism and strategies of RNAi for pest management, the development of RNAi-based transgenic plant, and the current status and advantages of deploying these products for pest control, as well as the future research directions and problems in production and commercialization. Overall, this study aims to elucidate the current development status of RNAi-based biopesticides and provide guidelines for future research.
Collapse
|
6
|
Chang Y, Yang B, Zhang Y, Dong C, Liu L, Zhao X, Wang G. Identification of sex-biased and neurodevelopment genes via brain transcriptome in Ostrinia furnacalis. Front Physiol 2022; 13:953538. [PMID: 36003649 PMCID: PMC9393524 DOI: 10.3389/fphys.2022.953538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Insect brains play important roles in the regulation of sex-biased behaviors such as mating and oviposition. The neural structure and function of brain differences between males and females have been identified, in which the antenna lobes (AL) showed the most discrepancy, however, the whole repertoire of the genes expressed in the brains and the molecular mechanism of neural signaling and structural development are still unclear. In this study, high-throughput transcriptome analysis of male and female brains was carried on in the Asia corn borer, Ostrinia furnacalis, and a total of 39.23 Gb data and 34,092 unigenes were obtained. Among them, 276 genes displayed sex-biased expression by DEG analysis, of which 125 genes were highly expressed in the males and 151 genes were highly expressed in the females. Besides, by homology analysis against genes that have been confirmed to be related to brain neurodevelopment, a total of 24 candidate genes were identified in O. furnacalis. In addition, to further screen the core genes that may be important for sex-biased nerve signaling and neurodevelopment, protein-protein interaction networks were constructed for the sex-biased genes and neurodevelopment genes. We identified 10 (Mhc, Mlc1, Mlc2, Prm, Mf, wupA, TpnC25D, fln, l(2)efl, and Act5C), 11 (PPO2, GNBP3, Spn77Ba, Ppn, yellow-d2, PGRP-LB, PGRP-SD, PGRP-SC2, Hml, Cg25C, and vkg) and 8 (dac, wg, hh, ci, run, Lim1, Rbp9, and Bx) core hub genes that may be related to brain neural development from male-biased, female-biased, and neurodevelopment gene groups. Our results provide a reference for further analysis of the dimorphism of male and female brain structures in agricultural pests.
Collapse
Affiliation(s)
- Yajun Chang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Bin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Guirong Wang, ; Bin Yang,
| | - Yu Zhang
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Chenxi Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xincheng Zhao
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Guirong Wang, ; Bin Yang,
| |
Collapse
|
7
|
Darlington M, Reinders JD, Sethi A, Lu AL, Ramaseshadri P, Fischer JR, Boeckman CJ, Petrick JS, Roper JM, Narva KE, Vélez AM. RNAi for Western Corn Rootworm Management: Lessons Learned, Challenges, and Future Directions. INSECTS 2022; 13:57. [PMID: 35055900 PMCID: PMC8779393 DOI: 10.3390/insects13010057] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023]
Abstract
The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is considered one of the most economically important pests of maize (Zea mays L.) in the United States (U.S.) Corn Belt with costs of management and yield losses exceeding USD ~1-2 billion annually. WCR management has proven challenging given the ability of this insect to evolve resistance to multiple management strategies including synthetic insecticides, cultural practices, and plant-incorporated protectants, generating a constant need to develop new management tools. One of the most recent developments is maize expressing double-stranded hairpin RNA structures targeting housekeeping genes, which triggers an RNA interference (RNAi) response and eventually leads to insect death. Following the first description of in planta RNAi in 2007, traits targeting multiple genes have been explored. In June 2017, the U.S. Environmental Protection Agency approved the first in planta RNAi product against insects for commercial use. This product expresses a dsRNA targeting the WCR snf7 gene in combination with Bt proteins (Cry3Bb1 and Cry34Ab1/Cry35Ab1) to improve trait durability and will be introduced for commercial use in 2022.
Collapse
Affiliation(s)
- Molly Darlington
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA; (M.D.); (J.D.R.)
| | - Jordan D. Reinders
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA; (M.D.); (J.D.R.)
| | - Amit Sethi
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | - Albert L. Lu
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | | | - Joshua R. Fischer
- Bayer Crop Science, Chesterfield, MO 63017, USA; (P.R.); (J.R.F.); (J.S.P.)
| | - Chad J. Boeckman
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | - Jay S. Petrick
- Bayer Crop Science, Chesterfield, MO 63017, USA; (P.R.); (J.R.F.); (J.S.P.)
| | - Jason M. Roper
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | | | - Ana M. Vélez
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA; (M.D.); (J.D.R.)
| |
Collapse
|
8
|
Weng YM, Francoeur CB, Currie CR, Kavanaugh DH, Schoville SD. A high-quality carabid genome assembly provides insights into beetle genome evolution and cold adaptation. Mol Ecol Resour 2021; 21:2145-2165. [PMID: 33938156 DOI: 10.1111/1755-0998.13409] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022]
Abstract
The hyperdiverse order Coleoptera comprises a staggering ~25% of known species on Earth. Despite recent breakthroughs in next generation sequencing, there remains a limited representation of beetle diversity in assembled genomes. Most notably, the ground beetle family Carabidae, comprising more than 40,000 described species, has not been studied in a comparative genomics framework using whole genome data. Here we generate a high-quality genome assembly for Nebria riversi, to examine sources of novelty in the genome evolution of beetles, as well as genetic changes associated with specialization to high-elevation alpine habitats. In particular, this genome resource provides a foundation for expanding comparative molecular research into mechanisms of insect cold adaptation. Comparison to other beetles shows a strong signature of genome compaction, with N. riversi possessing a relatively small genome (~147 Mb) compared to other beetles, with associated reductions in repeat element content and intron length. Small genome size is not, however, associated with fewer protein-coding genes, and an analysis of gene family diversity shows significant expansions of genes associated with cellular membranes and membrane transport, as well as protein phosphorylation and muscle filament structure. Finally, our genomic analyses show that these high-elevation beetles have endosymbiotic Spiroplasma, with several metabolic pathways (e.g., propanoate biosynthesis) that might complement N. riversi, although its role as a beneficial symbiont or as a reproductive parasite remains equivocal.
Collapse
Affiliation(s)
- Yi-Ming Weng
- Department of Entomology, University of Wisconsin - Madison, Madison, WI, USA
| | - Charlotte B Francoeur
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA.,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin - Madison, Madison, WI, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA.,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin - Madison, Madison, WI, USA
| | - David H Kavanaugh
- Department of Entomology, California Academy of Sciences, San Francisco, CA, USA
| | - Sean D Schoville
- Department of Entomology, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
9
|
Christiaens O, Whyard S, Vélez AM, Smagghe G. Double-Stranded RNA Technology to Control Insect Pests: Current Status and Challenges. FRONTIERS IN PLANT SCIENCE 2020; 11:451. [PMID: 32373146 PMCID: PMC7187958 DOI: 10.3389/fpls.2020.00451] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/26/2020] [Indexed: 05/21/2023]
Abstract
Exploiting the RNA interference (RNAi) gene mechanism to silence essential genes in pest insects, leading to toxic effects, has surfaced as a promising new control strategy in the past decade. While the first commercial RNAi-based products are currently coming to market, the application against a wide range of insect species is still hindered by a number of challenges. In this review, we discuss the current status of these RNAi-based products and the different delivery strategies by which insects can be targeted by the RNAi-triggering double-stranded RNA (dsRNA) molecules. Furthermore, this review also addresses a number of physiological and cellular barriers, which can lead to decreased RNAi efficacy in insects. Finally, novel non-transgenic delivery technologies, such as polymer or liposomic nanoparticles, peptide-based delivery vehicles and viral-like particles, are also discussed, as these could overcome these barriers and lead to effective RNAi-based pest control.
Collapse
Affiliation(s)
| | - Steve Whyard
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ana M. Vélez
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Guy Smagghe
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Vélez AM, Fishilevich E, Rangasamy M, Khajuria C, McCaskill DG, Pereira AE, Gandra P, Frey ML, Worden SE, Whitlock SL, Lo W, Schnelle KD, Lutz JR, Narva KE, Siegfried BD. Control of western corn rootworm via RNAi traits in maize: lethal and sublethal effects of Sec23 dsRNA. PEST MANAGEMENT SCIENCE 2020; 76:1500-1512. [PMID: 31677217 DOI: 10.1002/ps.5666] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/10/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND RNA interference (RNAi) triggered by maize plants expressing RNA hairpins against specific western corn rootworm (WCR) transcripts have proven to be effective at controlling this pest. To provide robust crop protection, mRNA transcripts targeted by double-stranded RNA must be sensitive to knockdown and encode essential proteins. RESULTS Using WCR adult feeding assays, we identified Sec23 as a highly lethal RNAi target. Sec23 encodes a coatomer protein, a component of the coat protein (COPII) complex that mediates ER-Golgi transport. The lethality detected in WCR adults was also observed in early instar larvae, the life stage causing most of the crop damage, suggesting that WCR adults can serve as an alternative to larvae for dsRNA screening. Surprisingly, over 85% transcript inhibition resulted in less than 40% protein knockdown, suggesting that complete protein knockdown is not necessary for Sec23 RNAi-mediated mortality. The efficacy of Sec23 dsRNA for rootworm control was confirmed in planta; T0 maize events carrying rootworm Sec23 hairpin transgenes showed high levels of root protection in greenhouse assays. A reduction in larval survival and weight were observed in the offspring of WCR females exposed to Sec23 dsRNA LC25 in diet bioassays. CONCLUSION We describe Sec23 as RNAi target for in planta rootworm control. High mortality in exposed adult and larvae and moderate sublethal effects in the offspring of females exposed to Sec23 dsRNA LC25 , suggest the potential for field application of this RNAi trait and the need to factor in responses to sublethal exposure into insect resistance management programs. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ana M Vélez
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Elane Fishilevich
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Corteva Agriscience, Indianapolis, IN, USA
| | | | - Chitvan Khajuria
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Adriano E Pereira
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | | | | | | | - Wendy Lo
- Corteva Agriscience, Indianapolis, IN, USA
| | | | | | | | - Blair D Siegfried
- Entomology and Nematology Department, Charles Steinmetz Hall, University of Florida, Gainesville, FL, USA
| |
Collapse
|
11
|
Pinheiro DH, Taylor CE, Wu K, Siegfried BD. Delivery of gene-specific dsRNA by microinjection and feeding induces RNAi response in Sri Lanka weevil, Myllocerus undecimpustulatus undatus Marshall. PEST MANAGEMENT SCIENCE 2020; 76:936-943. [PMID: 31461216 DOI: 10.1002/ps.5601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/31/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND RNA interference (RNAi) is widely used in entomological research for functional analysis of genes and is being considered as a new tool for insect pest management. Sri Lanka weevil (SLW) is a highly polyphagous pest of agronomically important plants, but currently only a few control methods are available for this insect. RESULTS In the present study, we evaluated the stability of candidate reference genes β-ACT, α-TUB, EF1-α, RPL12 and GAPDH, and identified EF1-α as the most reliable for gene expression normalization. Four target genes involved in different cellular processes, including Prosα2, RPS13, Snf7 and V-ATPase A were selected to evaluate whether RNAi response in SLW adults can be triggered by microinjection and oral feeding of their double-stranded RNAs (dsRNAs). Three days after injection of the dsRNAs for the target genes, their transcript levels were significantly reduced (up to 91.4%) when compared to the control. Additionally, weevils fed with the target dsRNAs showed significant decreases in gene transcript levels and significant mortality was observed in insects treated with Prosα2 and Snf7 dsRNAs (78.6 to 92.7%). CONCLUSION Our data demonstrate that microinjection and feeding of dsRNA produce a strong RNAi response in SLW, indicating that RNAi-based strategies could be explored to develop a selective and environmentally safe control method against SLW. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Daniele H Pinheiro
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | - Caitlin E Taylor
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Ke Wu
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Blair D Siegfried
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Bar L, Czosnek H, Sobol I, Ghanim M, Hariton Shalev A. Downregulation of dystrophin expression in pupae of the whitefly Bemisia tabaci inhibits the emergence of adults. INSECT MOLECULAR BIOLOGY 2019; 28:662-675. [PMID: 30834620 DOI: 10.1111/imb.12579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The whitefly Bemisia tabaci is a major pest to agriculture. Adults are able to fly for long distances and to colonize staple crops, herbs and ornamentals, and to vector viruses belonging to several important taxonomic groups. During their early development, whiteflies mature from eggs through several nymphal stages (instars I to IV) until adults emerge from pupae. We aim at reducing whitefly populations by inhibiting the emergence of adults from nymphs. Here we targeted dystrophin, a conserved protein essential for the development of the muscle system in humans, other animals and insects. We have exploited the fact that whitefly nymphs developing on tomato leaves feed from the plant phloem via their stylets. Thus, we delivered dystrophin-silencing double-stranded RNA to nymphs developing on leaves of tomato plantlets with their roots bathing in the silencing solution. Downregulation of dystrophin expression occurred mainly in pupae. Dystrophin silencing induced also the downregulation of the dystrophin-associated protein genes actin and tropomyosin, and disrupted F-actin. Most significantly, the treatment inhibited the emergence of adults from pupae, suggesting that targeting dystrophin may help to restrain whitefly populations. This study demonstrates for the first time the important role of dystrophin in the development of a major insect pest to agriculture.
Collapse
Affiliation(s)
- L Bar
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - H Czosnek
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - I Sobol
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - M Ghanim
- Department of Entomology, Volcani Center, ARO, Rishon LeZion, Israel
| | - A Hariton Shalev
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|