1
|
Yan Y, Ahmed HMM, Wimmer EA, Schetelig MF. Biotechnology-enhanced genetic controls of the global pest Drosophila suzukii. Trends Biotechnol 2024:S0167-7799(24)00249-X. [PMID: 39327106 DOI: 10.1016/j.tibtech.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
Spotted wing Drosophila (Drosophila suzukii Matsumura, or SWD), an insect pest of soft-skinned fruits native to East Asia, has rapidly spread worldwide in the past 15 years. Genetic controls such as sterile insect technique (SIT) have been considered for the environmentally friendly and cost-effective management of this pest. In this review, we provide the latest developments for the genetic control strategies of SWD, including sperm-marking strains, CRISPR-based sex-ratio distortion, neoclassical genetic sexing strains, transgenic sexing strains, a sex-sorting incompatible male system, precision-guided SIT, and gene drives based on synthetic Maternal effect dominant embryonic arrest (Medea) or homing CRISPR systems. These strategies could either enhance the efficacy of traditional SIT or serve as standalone methods for the sustainable control of SWD.
Collapse
Affiliation(s)
- Ying Yan
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstraße 2, 35394 Gießen, Germany.
| | - Hassan M M Ahmed
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany; Department of Crop Protection, Faculty of Agriculture - University of Khartoum, Postal code 13314 Khartoum North, Sudan
| | - Ernst A Wimmer
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Marc F Schetelig
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstraße 2, 35394 Gießen, Germany
| |
Collapse
|
2
|
Zhang L, Dai Z, Shi S, Yan Z, Yang J, Xue W, He Y, Mi S, Cheng C, Wang L, Li N, Tan W, Jiang Z, Sun H, Li S. SIRT3 and SIRT4 double-genes remodeled the mitochondrial network to induce hepatocellular carcinoma cell line differentiation and suppress malignant phenotypes. Biochem Pharmacol 2024; 223:116168. [PMID: 38548246 DOI: 10.1016/j.bcp.2024.116168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
Tumor cells with damaged mitochondria undergo metabolic reprogramming, but gene therapy targeting mitochondria has not been comprehensively reported. In this study, plasmids targeting the normal hepatocyte cell line (L-O2) and hepatocellular carcinoma cell line were generated using three genes SIRT3, SIRT4, and SIRT5. These deacetylases play a variety of regulatory roles in cancer and are related to mitochondrial function. Compared with L-O2, SIRT3 and SIRT4 significantly ameliorated mitochondrial damage in HCCLM3, Hep3B and HepG2 cell lines and regulated mitochondrial biogenesis and mitophagy, respectively. We constructed double-gene plasmid for co-express SIRT3 and SIRT4 using the internal ribosome entry site (IRES). The results indicated that the double-gene plasmid effectively expressed SIRT3 and SIRT4, significantly improved mitochondrial quality and function, and reduced mtDNA level and oxidative stress in HCC cells. MitoTracker analysis revealed that the mitochondrial network was restored. The proliferation, migration capabilities of HCC cells were reduced, whereas their differentiation abilities were enhanced. This study demonstrated that the use of IRES-linked SIRT3 and SIRT4 double-gene vectors induced the differentiation of HCC cells and inhibited their development by ameliorating mitochondrial dysfunction. This intervention helped reverse metabolic reprogramming, and may provide a groundbreaking new framework for HCC treatment.
Collapse
Affiliation(s)
- Lijun Zhang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Zhenning Dai
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 511436, China; Department of Stomatology, Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou 510095, China
| | - Shanshan Shi
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou 510632, China
| | - Zi Yan
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510630, China
| | - Jiaxin Yang
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510630, China
| | - Wanting Xue
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510630, China
| | - Yunhao He
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Siqi Mi
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Cheng Cheng
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Liangxu Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Nanxiang Li
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen 518111, China
| | - Wei Tan
- Department of Pediatric Orthopedics, The First Affiliated Hospital of Jinan University (Guangzhou Overseas Chinese Hospital), Guangzhou 510632, China
| | - Zhenyou Jiang
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou 510632, China.
| | - Hanxiao Sun
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 511436, China.
| | - Shiyu Li
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 511436, China; Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou 510632, China; Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou 510630, China.
| |
Collapse
|
3
|
Häcker I, Rehling T, Schlosser H, Mayorga-Ch D, Heilig M, Yan Y, Armbruster PA, Schetelig MF. Improved piggyBac Transformation with Capped Transposase mRNA in Pest Insects. Int J Mol Sci 2023; 24:15155. [PMID: 37894833 PMCID: PMC10606561 DOI: 10.3390/ijms242015155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Creating transgenic insects is a key technology in insect genetics and molecular biology. A widely used instrument in insect transgenesis is the piggyBac transposase, resulting in essentially random genomic integrations. In contrast, site-specific recombinases allow the targeted integration of the transgene construct into a specific genomic target site. Both strategies, however, often face limitations due to low transgenesis efficiencies. We aimed to enhance transgenesis efficiencies by utilizing capped mRNA as a source of transposase or recombinase instead of a helper plasmid. A systematic comparison of transgenesis efficiencies in Aedes mosquitoes, as models for hard-to-transform insects, showed that suppling piggyBac transposase as mRNA increased the average transformation efficiency in Aedes aegypti from less than 5% with the plasmid source to about 50% with mRNA. Similar high activity was observed in Ae. albopictus with pBac mRNA. No efficiency differences between plasmid and mRNA were observed in recombination experiments. Furthermore, a hyperactive version of piggyBac transposase delivered as a plasmid did not improve the transformation efficiency in Ae. aegypti or the agricultural pest Drosophila suzukii. We believe that the use of mRNA has strong potential for enhancing piggyBac transformation efficiencies in other mosquitoes and important agricultural pests, such as tephritids.
Collapse
Affiliation(s)
- Irina Häcker
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, Winchesterstr. 2, 35394 Giessen, Germany (H.S.); (Y.Y.); (M.F.S.)
- Liebig Centre for Agroecology & Climate Impact Research, 35394 Giessen, Germany
| | - Tanja Rehling
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, Winchesterstr. 2, 35394 Giessen, Germany (H.S.); (Y.Y.); (M.F.S.)
- Liebig Centre for Agroecology & Climate Impact Research, 35394 Giessen, Germany
| | - Henrik Schlosser
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, Winchesterstr. 2, 35394 Giessen, Germany (H.S.); (Y.Y.); (M.F.S.)
| | - Daniela Mayorga-Ch
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, Winchesterstr. 2, 35394 Giessen, Germany (H.S.); (Y.Y.); (M.F.S.)
| | - Mara Heilig
- Department of Biology, Georgetown University, 37th and O Streets NW, Washington, DC 20057-1229, USA; (M.H.); (P.A.A.)
| | - Ying Yan
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, Winchesterstr. 2, 35394 Giessen, Germany (H.S.); (Y.Y.); (M.F.S.)
- Liebig Centre for Agroecology & Climate Impact Research, 35394 Giessen, Germany
| | - Peter A. Armbruster
- Department of Biology, Georgetown University, 37th and O Streets NW, Washington, DC 20057-1229, USA; (M.H.); (P.A.A.)
| | - Marc F. Schetelig
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, Winchesterstr. 2, 35394 Giessen, Germany (H.S.); (Y.Y.); (M.F.S.)
- Liebig Centre for Agroecology & Climate Impact Research, 35394 Giessen, Germany
| |
Collapse
|
4
|
Jeyarajan S, Zhang IX, Arvan P, Lentz SI, Satin LS. Simultaneous Measurement of Changes in Mitochondrial and Endoplasmic Reticulum Free Calcium in Pancreatic Beta Cells. BIOSENSORS 2023; 13:382. [PMID: 36979594 PMCID: PMC10046164 DOI: 10.3390/bios13030382] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 05/28/2023]
Abstract
The free calcium (Ca2+) levels in pancreatic beta cell organelles have been the subject of many recent investigations. Under pathophysiological conditions, disturbances in these pools have been linked to altered intracellular communication and cellular dysfunction. To facilitate studies of subcellular Ca2+ signaling in beta cells and, particularly, signaling between the endoplasmic reticulum (ER) and mitochondria, we designed a novel dual Ca2+ sensor which we termed DS-1. DS-1 encodes two stoichiometrically fluorescent proteins within a single plasmid, G-CEPIA-er, targeted to the ER and R-CEPIA3-mt, targeted to mitochondria. Our goal was to simultaneously measure the ER and mitochondrial Ca2+ in cells in real time. The Kds of G-CEPIA-er and R-CEPIA3-mt for Ca2+ are 672 and 3.7 μM, respectively. Confocal imaging of insulin-secreting INS-1 832/13 expressing DS-1 confirmed that the green and red fluorophores correctly colocalized with organelle-specific fluorescent markers as predicted. Further, we tested whether DS-1 exhibited the functional properties expected by challenging an INS-1 cell to glucose concentrations or drugs having well-documented effects on the ER and mitochondrial Ca2+ handling. The data obtained were consistent with those seen using other single organelle targeted probes. These results taken together suggest that DS-1 is a promising new approach for investigating Ca2+ signaling within multiple organelles of the cell.
Collapse
Affiliation(s)
- Sivakumar Jeyarajan
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48105, USA; (S.J.)
| | - Irina X Zhang
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48105, USA; (S.J.)
| | - Peter Arvan
- Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Stephen I. Lentz
- Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Leslie S. Satin
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48105, USA; (S.J.)
- Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
5
|
Yan Y, Hosseini B, Scheld A, Pasham S, Rehling T, Schetelig MF. Effects of antibiotics on the in vitro expression of tetracycline-off constructs and the performance of Drosophila suzukii female-killing strains. Front Bioeng Biotechnol 2023; 11:876492. [PMID: 36865029 PMCID: PMC9971817 DOI: 10.3389/fbioe.2023.876492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Genetic control strategies such as the Release of Insects Carrying a Dominant Lethal (RIDL) gene and Transgenic Embryonic Sexing System (TESS) have been demonstrated in the laboratory and/or deployed in the field. These strategies are based on tetracycline-off (Tet-off) systems which are regulated by antibiotics such as Tet and doxycycline (Dox). Here, we generated several Tet-off constructs carrying a reporter gene cassette mediated by a 2A peptide. Different concentrations (0.1, 10, 100, 500, and 1,000 μg/mL) and types (Tet or Dox) of antibiotics were used to evaluate their effects on the expression of the Tet-off constructs in the Drosophila S2 cells. One or both of the two concentrations, 100 and 250 μg/mL, of Tet or Dox were used to check the influence on the performances of a Drosophila suzukii wild-type strain and female-killing (FK) strains employing TESS. Specifically, the Tet-off construct for these FK strains contains a Drosophila suzukii nullo promoter to regulate the tetracycline transactivator gene and a sex-specifically spliced pro-apoptotic gene hid Ala4 to eliminate females. The results suggested that the in vitro expression of the Tet-off constructs was controlled by antibiotics in a dose-dependent manner. ELISA experiments were carried out identifying Tet at 34.8 ng/g in adult females that fed on food supplemented with Tet at 100 μg/mL. However, such method did not detect Tet in the eggs produced by antibiotic-treated flies. Additionally, feeding Tet to the parents showed negative impact on the fly development but not the survival in the next generation. Importantly, we demonstrated that under certain antibiotic treatments females could survive in the FK strains with different transgene activities. For the strain V229_M4f1 which showed moderate transgene activity, feeding Dox to fathers or mothers suppressed the female lethality in the next generation and feeding Tet or Dox to mothers generated long-lived female survivors. For the strain V229_M8f2 which showed weak transgene activity, feeding Tet to mothers delayed the female lethality for one generation. Therefore, for genetic control strategies employing the Tet-off system, the parental and transgenerational effects of antibiotics on the engineered lethality and insect fitness must be carefully evaluated for a safe and efficient control program.
Collapse
Affiliation(s)
- Ying Yan
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany,*Correspondence: Ying Yan,
| | - Bashir Hosseini
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Annemarie Scheld
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Srilakshmi Pasham
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Tanja Rehling
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Marc F. Schetelig
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Giessen, Germany,Liebig Centre for Agroecology and Climate Impact Research, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
6
|
Mukherjee M, Wang ZQ. A well-characterized polycistronic-like gene expression system in yeast. Biotechnol Bioeng 2023; 120:260-271. [PMID: 36168285 DOI: 10.1002/bit.28247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/14/2022] [Accepted: 09/24/2022] [Indexed: 11/10/2022]
Abstract
Efficient expression of multiple genes is critical to yeast metabolic engineering for the bioproduction of bulk and fine chemicals. A yeast polycistronic expression system is of particular interest because one promoter can drive the expression of multiple genes. 2A viral peptides enable the cotranslation of multiple proteins from a single mRNA by ribosomal skipping. However, the wide adaptation of 2A viral peptides for polycistronic-like gene expression in yeast awaits in-depth characterizations. Additionally, a one-step assembly of such a polycistronic-like system is highly desirable. To this end, we have developed a modular cloning (MoClo) compatible 2A peptide-based polycistronic-like system capable of expressing multiple genes from a single promoter in yeast. Characterizing the bi-, tri-, and quad-cistronic expression of fluorescent proteins showed high cleavage efficiencies of three 2A peptides: E2A from equine rhinitis B virus, P2A from porcine teschovirus-1, and O2A from Operophtera brumata cypovirus-18. Applying the polycistronic-like system to produce geraniol, a valuable industrial compound, resulted in comparable or higher titers than using conventional monocistronic constructs. In summary, this highly-characterized polycistronic-like gene expression system is another tool to facilitate multigene expression for metabolic engineering in yeast.
Collapse
Affiliation(s)
- Minakshi Mukherjee
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Zhen Q Wang
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
7
|
Ning L, Geng Y, Lovett-Barron M, Niu X, Deng M, Wang L, Ataie N, Sens A, Ng HL, Chen S, Deisseroth K, Lin MZ, Chu J. A Bright, Nontoxic, and Non-aggregating red Fluorescent Protein for Long-Term Labeling of Fine Structures in Neurons. Front Cell Dev Biol 2022; 10:893468. [PMID: 35846353 PMCID: PMC9278655 DOI: 10.3389/fcell.2022.893468] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Red fluorescent proteins are useful as morphological markers in neurons, often complementing green fluorescent protein-based probes of neuronal activity. However, commonly used red fluorescent proteins show aggregation and toxicity in neurons or are dim. We report the engineering of a bright red fluorescent protein, Crimson, that enables long-term morphological labeling of neurons without aggregation or toxicity. Crimson is similar to mCherry and mKate2 in fluorescence spectra but is 100 and 28% greater in molecular brightness, respectively. We used a membrane-localized Crimson-CAAX to label thin neurites, dendritic spines and filopodia, enhancing detection of these small structures compared to cytosolic markers.
Collapse
Affiliation(s)
- Lin Ning
- Department of Neurobiology, Stanford University, Stanford, CA, United States
| | - Yang Geng
- Department of Neurobiology, Stanford University, Stanford, CA, United States.,Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, China University of Chinese Academy of Sciences, Beijing, China
| | | | - Xiaoman Niu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, China University of Chinese Academy of Sciences, Beijing, China
| | - Mengying Deng
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology and Center for Biomedical Optics and Molecular Imaging, and CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liang Wang
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology and Center for Biomedical Optics and Molecular Imaging, and CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Niloufar Ataie
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Alex Sens
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Ho-Leung Ng
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Shoudeng Chen
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Michael Z Lin
- Department of Neurobiology, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Jun Chu
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology and Center for Biomedical Optics and Molecular Imaging, and CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
8
|
Wang X, Marchisio MA. Synthetic polycistronic sequences in eukaryotes. Synth Syst Biotechnol 2021; 6:254-261. [PMID: 34584993 PMCID: PMC8449083 DOI: 10.1016/j.synbio.2021.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022] Open
Abstract
The need for co-ordinate, high-level, and stable expression of multiple genes is essential for the engineering of biosynthetic circuits and metabolic pathways. This work outlines the functionality and design of IRES- and 2 A-peptide-based constructs by comparing different strategies for co-expression in polycistronic vectors. In particular, 2 A sequences are small peptides, mostly derived from viral polyproteins, that mediate a ribosome-skipping event such that several, different, separate proteins can be generated from a single open reading frame. When applied to metabolic engineering and synthetic gene circuits, 2 A peptides permit to achieve co-regulated and reliable expression of various genes in eukaryotic cells.
Collapse
Affiliation(s)
- Xuekun Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072, Tianjin, China
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072, Tianjin, China
| |
Collapse
|
9
|
de Lima JGS, Lanza DCF. 2A and 2A-like Sequences: Distribution in Different Virus Species and Applications in Biotechnology. Viruses 2021; 13:v13112160. [PMID: 34834965 PMCID: PMC8623073 DOI: 10.3390/v13112160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 01/20/2023] Open
Abstract
2A is an oligopeptide sequence that mediates a ribosome “skipping” effect and can mediate a co-translation cleavage of polyproteins. These sequences are widely distributed from insect to mammalian viruses and could act by accelerating adaptive capacity. These sequences have been used in many heterologous co-expression systems because they are versatile tools for cleaving proteins of biotechnological interest. In this work, we review and update the occurrence of 2A/2A-like sequences in different groups of viruses by screening the sequences available in the National Center for Biotechnology Information database. Interestingly, we reported the occurrence of 2A-like for the first time in 69 sequences. Among these, 62 corresponded to positive single-stranded RNA species, six to double stranded RNA viruses, and one to a negative-sense single-stranded RNA virus. The importance of these sequences for viral evolution and their potential in biotechnological applications are also discussed.
Collapse
Affiliation(s)
- Juliana G. S. de Lima
- Applied Molecular Biology Lab—LAPLIC, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal 59064-720, Brazil;
- Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal 59064-720, Brazil
| | - Daniel C. F. Lanza
- Applied Molecular Biology Lab—LAPLIC, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal 59064-720, Brazil;
- Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal 59064-720, Brazil
- Correspondence: ; Tel.: +55-84-3215-3416; Fax: +55-84-3215-3415
| |
Collapse
|
10
|
Highly Efficient Temperature Inducible CRISPR-Cas9 Gene Targeting in Drosophila suzukii. Int J Mol Sci 2021; 22:ijms22136724. [PMID: 34201604 PMCID: PMC8268499 DOI: 10.3390/ijms22136724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
The spotted-wing Drosophila (Drosophila suzukii Matsumura) is native to eastern Asia, but has become a global threat to fruit production. In recent years, CRISPR/Cas9 targeting was established in this species allowing for functional genomic and genetic control studies. Here, we report the generation and characterization of Cas9-expressing strains of D. suzukii. Five independent transgenic lines were generated using a piggyBac construct containing the EGFP fluorescent marker gene and the Cas9 gene under the control of the D. melanogaster heat shock protein 70 promoter and 3’UTR. Heat-shock (HS) treated embryos were analyzed by reverse transcriptase PCR, revealing strong heat inducibility of the transgenic Cas9 expression. By injecting gRNA targeting EGFP into one selected line, 50.0% of G0 flies showed mosaic loss-of-fluorescence phenotype, and 45.5% of G0 flies produced G1 mutants without HS. Such somatic and germline mutagenesis rates were increased to 95.4% and 85.7%, respectively, by applying a HS. Parental flies receiving HS resulted in high inheritance of the mutation (92%) in their progeny. Additionally, targeting the endogenous gene yellow led to the lack of pigmentation and male lethality. We discuss the potential use of these efficient and temperature-dependent Cas9-expressing strains for the genetic studies in D. suzukii.
Collapse
|
11
|
Schetelig MF, Schwirz J, Yan Y. A transgenic female killing system for the genetic control of Drosophila suzukii. Sci Rep 2021; 11:12938. [PMID: 34155227 PMCID: PMC8217240 DOI: 10.1038/s41598-021-91938-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
The spotted wing Drosophila (Drosophila suzukii) is an invasive pest of soft-skinned fruit crops. It is rapidly transmitted in Europe and North America, causing widespread agricultural losses. Genetic control strategies such as the sterile insect technique (SIT) have been proposed as environment-friendly and species-restricted approaches for this pest. However, females are inefficient agents in SIT programs. Here we report a conditional female-killing (FK) strategy based on the tetracycline-off system. We assembled sixteen genetic constructs for testing in vitro and in vivo. Twenty-four independent transgenic strains of D. suzukii were generated and tested for female-specific lethality. The strongest FK effect in the absence of tetracycline was achieved by the construct containing D. suzukii nullo promoter for early gene expression, D. suzukii pro-apoptotic gene hidAla4 for lethality, and the transformer gene intron from the Mediterranean fruit fly Ceratitis capitata for female-specific splicing. One strain carrying this construct eliminated 100% of the female offspring during embryogenesis and produced only males. However, homozygous females from these FK strains were not viable on a tetracycline-supplemented diet, possibly due to the basal expression of hidAla4. Potential improvements to the gene constructs and the use of such FK strains in an SIT program are discussed.
Collapse
Affiliation(s)
- Marc F Schetelig
- Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Justus-Liebig-University Giessen, Winchesterstraße 2, 35394, Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Winchesterstraße 2, 35394, Giessen, Germany
| | - Jonas Schwirz
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Winchesterstraße 2, 35394, Giessen, Germany
| | - Ying Yan
- Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Justus-Liebig-University Giessen, Winchesterstraße 2, 35394, Giessen, Germany.
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Winchesterstraße 2, 35394, Giessen, Germany.
| |
Collapse
|
12
|
Yan Y, Schwirz J, Schetelig MF. Characterization of the Drosophila suzukii β2-tubulin gene and the utilization of its promoter to monitor sex separation and insemination. Gene 2020; 771:145366. [PMID: 33346099 DOI: 10.1016/j.gene.2020.145366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 11/19/2022]
Abstract
The Drosophila melanogaster β2-tubulin gene (Dm-β2t) controls the function of microtubules in the testis and sperm, and has been evaluated for use in biocontrol strategies based on the sterile insect technique, including sexing and the induction of male sterility. The spotted-wing Drosophila (Drosophila suzukii) is native to eastern Asia but has spread globally as an invasive pest of fruit crops, so biocontrol strategies are urgently required for this species. We therefore isolated the β2tubulin ortholog Ds-β2t from the USA laboratory strain of D. suzukii and confirmed the presence of functional motifs by aligning orthologs from multiple insects. The developmental expression profile of Ds-β2t was determined by RT-PCR using gene-specific primers and was similar to that of Dm-β2t. We then isolated the Ds-β2t promoter and used it to generate transgenic strains expressing a testis-specific fluorescent protein starting from the thirdinstar larvae. Efficient sexing was achieved based on fluorescence detection, and the transgenic males showed a similar survival rate to wild-type males. Fluorescence imaging and PCR were also used to confirm the insemination of wild-type females by transgenic males. We therefore confirm that D. suzukii strains expressing fluorescent markers under the control of the Ds-β2t promoter can be used for sexing and the confirmation of mating, and we discuss the wider potential of the Ds-β2t promoter in the context of genetic control strategies for D. suzukii.
Collapse
Affiliation(s)
- Ying Yan
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstraße 2, 35394 Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Winchesterstraße 2, Germany.
| | - Jonas Schwirz
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Winchesterstraße 2, Germany
| | - Marc F Schetelig
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstraße 2, 35394 Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Winchesterstraße 2, Germany.
| |
Collapse
|
13
|
Yan Y, Jaffri SA, Schwirz J, Stein C, Schetelig MF. Identification and characterization of four Drosophila suzukii cellularization genes and their promoters. BMC Genet 2020; 21:146. [PMID: 33339500 PMCID: PMC7747377 DOI: 10.1186/s12863-020-00939-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background The spotted-wing Drosophila (Drosophila suzukii) is a widespread invasive pest that causes severe economic damage to fruit crops. The early development of D. suzukii is similar to that of other Drosophilids, but the roles of individual genes must be confirmed experimentally. Cellularization genes coordinate the onset of cell division as soon as the invagination of membranes starts around the nuclei in the syncytial blastoderm. The promoters of these genes have been used in genetic pest-control systems to express transgenes that confer embryonic lethality. Such systems could be helpful in sterile insect technique applications to ensure that sterility (bi-sex embryonic lethality) or sexing (female-specific embryonic lethality) can be achieved during mass rearing. The activity of cellularization gene promoters during embryogenesis controls the timing and dose of the lethal gene product. Results Here, we report the isolation of the D. suzukii cellularization genes nullo, serendipity-α, bottleneck and slow-as-molasses from a laboratory strain. Conserved motifs were identified by comparing the encoded proteins with orthologs from other Drosophilids. Expression profiling confirmed that all four are zygotic genes that are strongly expressed at the early blastoderm stage. The 5′ flanking regions from these cellularization genes were isolated, incorporated into piggyBac vectors and compared in vitro for the promoter activities. The Dsnullo promoter showed the highest activity in the cell culture assays using D. melanogaster S2 cells. Conclusions The similarities in the gene coding and 5′ flanking sequence as well as in the expression pattern of the four cellularization genes between D. melanogaster and D. suzukii, suggest that conserved functions may be involved in both species. The high expression level at the early blastoderm stage of the four cellularization genes were confirmed, thus their promoters can be considered in embryonic lethality systems. While the Dsnullo promoter could be a suitable candidate, all reported promoters here are subject to further in vivo analyses before constructing potential pest control systems. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-020-00939-y.
Collapse
Affiliation(s)
- Ying Yan
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstr. 2, 35394, Giessen, Germany. .,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 35394, Giessen, Germany.
| | - Syeda A Jaffri
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstr. 2, 35394, Giessen, Germany
| | - Jonas Schwirz
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 35394, Giessen, Germany
| | - Carl Stein
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstr. 2, 35394, Giessen, Germany
| | - Marc F Schetelig
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstr. 2, 35394, Giessen, Germany. .,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 35394, Giessen, Germany.
| |
Collapse
|
14
|
Using Moderate Transgene Expression to Improve the Genetic Sexing System of the Australian Sheep Blow Fly Lucilia cuprina. INSECTS 2020; 11:insects11110797. [PMID: 33202756 PMCID: PMC7697711 DOI: 10.3390/insects11110797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 11/24/2022]
Abstract
Simple Summary Populations of pest insects can be suppressed through repeated mass releases of sterilized insects. This is particularly effective if only sterile males are released. We previously developed several genetically modified strains of the Australian sheep blowfly that produce only males when raised on diet that lacked tetracycline. A disadvantage of the some of the engineered strains was that females would lay few eggs unless fed a diet with a low dose of tetracycline. In this study we show that effective male-only strains can be made by combining driver/effector lines that have moderate transgene expression/activity. Furthermore, the strain does not require tetracycline in the adult diet for female fertility. This “moderate expression/activity” strategy could be more generally applied to other pests that can be genetically modified. Abstract The sterile insect technique (SIT) is a promising strategy to control the Australian sheep blow fly Lucilia cuprina, a major pest of sheep. We have previously developed a transgenic embryonic sexing system (TESS) for this pest to facilitate the potential SIT application. TESS carry two transgenes, a tetracycline transactivator (tTA) driver and a tTA-activated pro-apoptotic effector. TESS females die at the embryonic stage unless tetracycline is supplied in the diet. However, undesired female sterility was observed in some TESS strains without tetracycline due to expression of tTA in ovaries. Here we investigate if TESS that combine transgenes with relatively low/moderate expression/activity improves the fertility of TESS females. tTA driver lines were evaluated for tTA expression by quantitative real time PCR and/or by crossing with a tTA-activated RFPex effector line. Fertility and lethality tests showed that a TESS strain containing a driver line with moderate tTA expression and an effector line showing moderate pro-apoptotic activity could recover the fertility of parental females and eliminated all female offspring at the embryonic stage. Consequently, such a strain could be further evaluated for an SIT program for L. cuprina, and such a “moderate strategy” could be considered for the TESS development in other pest species.
Collapse
|
15
|
Functional characterization of the Drosophila suzukii pro-apoptotic genes reaper, head involution defective and grim. Apoptosis 2020; 25:864-874. [PMID: 33113043 DOI: 10.1007/s10495-020-01640-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2020] [Indexed: 12/18/2022]
Abstract
Apoptosis is a fundamental process for the elimination of damaged or unwanted cells, and is a key aspect of development. It is triggered by pro-apoptotic genes responding to the intrinsic pathway that senses cell stress or the extrinsic pathway that responds to signals from other cells. The disruption of these genes can therefore lead to developmental defects and disease. Pro-apoptotic genes have been studied in detail in the fruit fly Drosophila melanogaster, a widely-used developmental model. However, little is known about the corresponding genes in its relative D. suzukii, a pest of soft fruit crops that originates from Asia but is now an invasive species in many other regions. The characterization of D. suzukii pro-apoptotic genes could lead to the development of transgenic sexing strains for pest management. Here, we describe the isolation and characterization of the pro-apoptotic genes reaper (Dsrpr), head involution defective (Dshid) and grim (Dsgrim) from a laboratory strain of D. suzukii. We determined their expression profiles during development, revealing that all three genes are expressed throughout development but Dsrpr is expressed most strongly, especially at the pupal stage. Functional analysis was carried out by expressing single genes or pairs (linked by a 2A peptide) in S2 cell death assays, indicating that Dsgrim and Dshid are more potent pro-apoptotic genes than Dsrpr, and the lethality can be significantly enhanced by co-expression of two genes. Therefore, the binary or multiple expression of different pro-apoptotic genes can be considered to build an efficient transgenic sexing system in D. suzukii.
Collapse
|