1
|
Marco HG, Glendinning S, Ventura T, Gäde G. The gonadotropin-releasing hormone (GnRH) superfamily across Pancrustacea/Tetraconata: A role in metabolism? Mol Cell Endocrinol 2024; 590:112238. [PMID: 38616035 DOI: 10.1016/j.mce.2024.112238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Affiliation(s)
- Heather G Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7701, South Africa.
| | - Susan Glendinning
- Centre for BioInnovation, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Tomer Ventura
- Centre for BioInnovation, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7701, South Africa
| |
Collapse
|
2
|
Jiang S, Marco HG, Scheich N, He S, Wang Z, Gäde G, McMahon DP. Comparative analysis of adipokinetic hormones and their receptors in Blattodea reveals novel patterns of gene evolution. INSECT MOLECULAR BIOLOGY 2023; 32:615-633. [PMID: 37382487 DOI: 10.1111/imb.12861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/18/2023] [Indexed: 06/30/2023]
Abstract
Adipokinetic hormone (AKH) is a neuropeptide produced in the insect corpora cardiaca that plays an essential role in mobilising carbohydrates and lipids from the fat body to the haemolymph. AKH acts by binding to a rhodopsin-like G protein-coupled receptor (GPCR), the adipokinetic hormone receptor (AKHR). In this study, we tackle AKH ligand and receptor gene evolution as well as the evolutionary origins of AKH gene paralogues from the order Blattodea (termites and cockroaches). Phylogenetic analyses of AKH precursor sequences point to an ancient AKH gene duplication event in the common ancestor of Blaberoidea, yielding a new group of putative decapeptides. In total, 16 different AKH peptides from 90 species were obtained. Two octapeptides and seven putatively novel decapeptides are predicted for the first time. AKH receptor sequences from 18 species, spanning solitary cockroaches and subsocial wood roaches as well as lower and higher termites, were subsequently acquired using classical molecular methods and in silico approaches employing transcriptomic data. Aligned AKHR open reading frames revealed 7 highly conserved transmembrane regions, a typical arrangement for GPCRs. Phylogenetic analyses based on AKHR sequences support accepted relationships among termite, subsocial (Cryptocercus spp.) and solitary cockroach lineages to a large extent, while putative post-translational modification sites do not greatly differ between solitary and subsocial roaches and social termites. Our study provides important information not only for AKH and AKHR functional research but also for further analyses interested in their development as potential candidates for biorational pest control agents against invasive termites and cockroaches.
Collapse
Affiliation(s)
- Shixiong Jiang
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Heather G Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Nina Scheich
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Shulin He
- College of Life Science, Chongqing Normal University, Chongqing, China
| | - Zongqing Wang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Dino P McMahon
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| |
Collapse
|
3
|
Vu NQ, Yen HC, Fields L, Cao W, Li L. HyPep: An Open-Source Software for Identification and Discovery of Neuropeptides Using Sequence Homology Search. J Proteome Res 2023; 22:420-431. [PMID: 36696582 PMCID: PMC10160011 DOI: 10.1021/acs.jproteome.2c00597] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neuropeptides are a class of endogenous peptides that have key regulatory roles in biochemical, physiological, and behavioral processes. Mass spectrometry analyses of neuropeptides often rely on protein informatics tools for database searching and peptide identification. As neuropeptide databases are typically experimentally built and comprised of short sequences with high sequence similarity to each other, we developed a novel database searching tool, HyPep, which utilizes sequence homology searching for peptide identification. HyPep aligns de novo sequenced peptides, generated through PEAKS software, with neuropeptide database sequences and identifies neuropeptides based on the alignment score. HyPep performance was optimized using LC-MS/MS measurements of peptide extracts from various Callinectes sapidus neuronal tissue types and compared with a commercial database searching software, PEAKS DB. HyPep identified more neuropeptides from each tissue type than PEAKS DB at 1% false discovery rate, and the false match rate from both programs was 2%. In addition to identification, this report describes how HyPep can aid in the discovery of novel neuropeptides.
Collapse
Affiliation(s)
- Nhu Q Vu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Hsu-Ching Yen
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Weifeng Cao
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
4
|
In Silico Screening for Pesticide Candidates against the Desert Locust Schistocerca gregaria. Life (Basel) 2022; 12:life12030387. [PMID: 35330138 PMCID: PMC8953258 DOI: 10.3390/life12030387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 11/26/2022] Open
Abstract
Adipokinetic hormone (AKH) is one of the most important metabolic neuropeptides in insects, with actions similar to glucagon in vertebrates. AKH regulates carbohydrate and fat metabolism by mobilizing trehalose and diacylglycerol into circulation from glycogen and triacylglycerol stores, respectively, in the fat body. The short peptide (8 to 10 amino acids long) exerts its function by binding to a rhodopsin-like G protein-coupled receptor located in the cell membrane of the fat body. The AKH receptor (AKHR) is, thus, a potential target for the development of novel specific (peptide) mimetics to control pest insects, such as locusts, which are feared for their prolific breeding, swarm-forming behavior and voracious appetite. Previously, we proposed a model of the interaction between the three endogenous AKHs of the desert locust, Schistocerca gregaria, and the cognate AKHR (Jackson et al., Peer J. 7, e7514, 2019). In the current study we have performed in silico screening of two databases (NCI Open 2012 library and Zinc20) to identify compounds which may fit the endogenous Schgr-AKH-II binding site on the AKHR of S. gregaria. In all, 354 compounds were found to fit the binding site with glide scores < −8. Using the glide scores and binding energies, 7 docked compounds were selected for molecular dynamic simulation in a phosphatidylcholine membrane. Of these 7 compounds, 4 had binding energies which would allow them to compete with Schgr-AKH-II for the receptor binding site and so are proposed as agonistic ligand candidates. One of the ligands, ZINC000257251537, was tested in a homospecific in vivo biological assay and found to have significant antagonistic activity.
Collapse
|
5
|
Marco HG, Šimek P, Gäde G. Unique Members of the Adipokinetic Hormone Family in Butterflies and Moths (Insecta, Lepidoptera). Front Physiol 2020; 11:614552. [PMID: 33391031 PMCID: PMC7773649 DOI: 10.3389/fphys.2020.614552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/03/2020] [Indexed: 01/17/2023] Open
Abstract
Lepidoptera is amongst one of the four most speciose insect orders and ecologically very successful because of their ability to fly. Insect flight is always aerobic and exacts a high metabolic demand on the animal. A family of structurally related neuropeptides, generically referred to as adipokinetic hormones (AKHs), play a key role in triggering the release of readily utilizable fuel metabolites into the hemolymph from the storage forms in the fat body. We used mass spectrometry to elucidate AKH sequences from 34 species of Lepidoptera and searched the literature and publicly available databases to compile (in a phylogenetic context) a comprehensive list of all Lepidoptera sequences published/predicted from a total of 76 species. We then used the resulting set of 15 biochemically characterized AKHs in a physiological assay that measures lipid or carbohydrate mobilization in three different lepidopteran species to learn about the functional cross-activity (receptor-ligand interactions) amongst the different butterfly/moth families. Our results include novel peptide structures, demonstrate structural diversity, phylogenetic trends in peptide distribution and order-specificity of Lepidoptera AKHs. There is almost an equal occurrence of octa-, nona-, and decapeptides, with an unparalleled emphasis on nonapeptides than in any insect order. Primitive species make Peram-CAH-II, an octapeptide found also in other orders; the lepidopteran signature peptide is Manse-AKH. Not all of the 15 tested AKHs are active in Pieris brassicae; this provides insight into structure-activity specificity and could be useful for further investigations into possible biorational insecticide development.
Collapse
Affiliation(s)
- Heather G. Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Petr Šimek
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|