1
|
Oke CE, Ingham VA, Walling CA, Reece SE. Vector control: agents of selection on malaria parasites? Trends Parasitol 2022; 38:890-903. [PMID: 35981937 DOI: 10.1016/j.pt.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/30/2022] [Accepted: 07/21/2022] [Indexed: 10/15/2022]
Abstract
Insect vectors are responsible for spreading many infectious diseases, yet interactions between pathogens/parasites and insect vectors remain poorly understood. Filling this knowledge gap matters because vectors are evolving in response to the deployment of vector control tools (VCTs). Yet, whilst the evolutionary responses of vectors to VCTs are being carefully monitored, the knock-on consequences for parasite evolution have been overlooked. By examining how mosquito responses to VCTs impact upon malaria parasite ecology, we derive a framework for predicting parasite responses. Understanding how VCTs affect the selection pressures imposed on parasites could help to mitigate against parasite evolution that leads to unfavourable epidemiological outcomes. Furthermore, anticipating parasite evolution will inform monitoring strategies for VCT programmes as well as uncovering novel VCT strategies.
Collapse
Affiliation(s)
- Catherine E Oke
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK.
| | - Victoria A Ingham
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69210 Heidelberg, Germany
| | - Craig A Walling
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Sarah E Reece
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK; Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| |
Collapse
|
2
|
Maharaj S, Ekoka E, Erlank E, Nardini L, Reader J, Birkholtz LM, Koekemoer LL. The ecdysone receptor regulates several key physiological factors in Anopheles funestus. Malar J 2022; 21:97. [PMID: 35305668 PMCID: PMC8934008 DOI: 10.1186/s12936-022-04123-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Malaria is a devastating disease, transmitted by female Anopheles mosquitoes infected with Plasmodium parasites. Current insecticide-based strategies exist to control the spread of malaria by targeting vectors. However, the increase in insecticide resistance in vector populations hinder the efficacy of these methods. It is, therefore, essential to develop novel vector control methods that efficiently target transmission reducing factors such as vector density and competence. A possible vector control candidate gene, the ecdysone receptor, regulates longevity, reproduction, immunity and other physiological processes in several insects, including malaria vectors. Anopheles funestus is a prominent vector in sub-Saharan Africa, however, the function of the ecdysone receptor in this mosquito has not previously been studied. This study aimed to determine if the ecdysone receptor depletion impacts An. funestus longevity, reproduction and susceptibility to Plasmodium falciparum infection.
Methods
RNA interference was used to reduce ecdysone receptor expression levels in An. funestus females and investigate how the above-mentioned phenotypes are influenced. Additionally, the expression levels of the ecdysone receptor, and reproduction genes lipophorin and vitellogenin receptor as well as the immune gene, leucine rich immune molecule 9 were determined in ecdysone receptor-depleted mosquitoes using quantitative polymerase chain reaction.
Results
Ecdysone receptor-depleted mosquitoes had a shorter lifespan, impaired oogenesis, were less fertile, and had reduced P. falciparum infection intensity.
Conclusions
Overall, this study provides the first experimental evidence that supports ecdysone receptor as a potential target in the development of vector control measures targeting An. funestus.
Collapse
|
3
|
Ekoka E, Maharaj S, Nardini L, Dahan-Moss Y, Koekemoer LL. 20-Hydroxyecdysone (20E) signaling as a promising target for the chemical control of malaria vectors. Parasit Vectors 2021; 14:86. [PMID: 33514413 PMCID: PMC7844807 DOI: 10.1186/s13071-020-04558-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/19/2020] [Indexed: 01/07/2023] Open
Abstract
With the rapid development and spread of resistance to insecticides among anopheline malaria vectors, the efficacy of current World Health Organization (WHO)-approved insecticides targeting these vectors is under threat. This has led to the development of novel interventions, including improved and enhanced insecticide formulations with new targets or synergists or with added sterilants and/or antimalarials, among others. To date, several studies in mosquitoes have revealed that the 20-hydroxyecdysone (20E) signaling pathway regulates both vector abundance and competence, two parameters that influence malaria transmission. Therefore, insecticides which target 20E signaling (e.g. methoxyfenozide and halofenozide) may be an asset for malaria vector control. While such insecticides are already commercially available for lepidopteran and coleopteran pests, they still need to be approved by the WHO for malaria vector control programs. Until recently, chemicals targeting 20E signaling were considered to be insect growth regulators, and their effect was mostly studied against immature mosquito stages. However, in the last few years, promising results have been obtained by applying methoxyfenozide or halofenozide (two compounds that boost 20E signaling) to Anopheles populations at different phases of their life-cycle. In addition, preliminary studies suggest that methoxyfenozide resistance is unstable, causing the insects substantial fitness costs, thereby potentially circumventing one of the biggest challenges faced by current vector control efforts. In this review, we first describe the 20E signaling pathway in mosquitoes and then summarize the mechanisms whereby 20E signaling regulates the physiological processes associated with vector competence and vector abundance. Finally, we discuss the potential of using chemicals targeting 20E signaling to control malaria vectors.![]()
Collapse
Affiliation(s)
- Elodie Ekoka
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa.
| | - Surina Maharaj
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Luisa Nardini
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Yael Dahan-Moss
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Lizette L Koekemoer
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| |
Collapse
|
4
|
Reynolds RA, Kwon H, Alves E Silva TL, Olivas J, Vega-Rodriguez J, Smith RC. The 20-hydroxyecdysone agonist, halofenozide, promotes anti-Plasmodium immunity in Anopheles gambiae via the ecdysone receptor. Sci Rep 2020; 10:21084. [PMID: 33273588 PMCID: PMC7713430 DOI: 10.1038/s41598-020-78280-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Mosquito physiology and immunity are integral determinants of malaria vector competence. This includes the principal role of hormonal signaling in Anopheles gambiae initiated shortly after blood-feeding, which stimulates immune induction and promotes vitellogenesis through the function of 20-hydroxyecdysone (20E). Previous studies demonstrated that manipulating 20E signaling through the direct injection of 20E or the application of a 20E agonist can significantly impact Plasmodium infection outcomes, reducing oocyst numbers and the potential for malaria transmission. In support of these findings, we demonstrate that a 20E agonist, halofenozide, is able to induce anti-Plasmodium immune responses that limit Plasmodium ookinetes. We demonstrate that halofenozide requires the function of ultraspiracle (USP), a component of the canonical heterodimeric ecdysone receptor, to induce malaria parasite killing responses. Additional experiments suggest that the effects of halofenozide treatment are temporal, such that its application only limits malaria parasites when applied prior to infection. Unlike 20E, halofenozide does not influence cellular immune function or AMP production. Together, our results further demonstrate the potential of targeting 20E signaling pathways to reduce malaria parasite infection in the mosquito vector and provide new insight into the mechanisms of halofenozide-mediated immune activation that differ from 20E.
Collapse
Affiliation(s)
| | - Hyeogsun Kwon
- Department of Entomology, Iowa State University, Ames, IA, USA
| | - Thiago Luiz Alves E Silva
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Janet Olivas
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Joel Vega-Rodriguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Ryan C Smith
- Department of Entomology, Iowa State University, Ames, IA, USA.
| |
Collapse
|