1
|
Zhang ZL, Wang XJ, Lu HB, Huang HJ. Comparative Transcriptomic Analysis Reveals Adaptation Mechanisms of Bean Bug Riptortus pedestris to Different Food Resources. INSECTS 2023; 14:739. [PMID: 37754707 PMCID: PMC10531862 DOI: 10.3390/insects14090739] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
The bean bug, Riptortus pedestris (Hemiptera: Heteroptera), poses a significant threat to soybean production, resulting in substantial crop losses. Throughout the soybean cultivation period, these insects probe and suck on various parts of plants, including leaves, pods, and beans. However, the specific mechanisms by which they adapt to different food resources remain unknown. In this study, we conducted gut transcriptomic analyses of R. pedestris fed with soybean leaves, pods, and beans. A total of 798, 690, and 548 differently expressed genes (DEGs) were monitored in G-pod vs. G-leaf (comparison of insect feeding on pods and leaves), G-bean vs. G-leaf (comparison of insect feeding on beans and leaves), and G-pod vs. G-bean (comparison of insect feeding on pods and beans), respectively. When fed on pods and beans, there was a significant increase in the expression of digestive enzymes, particularly cathepsins, serine proteases, and lipases. Conversely, when soybean leaves were consumed, detoxification enzymes, such as ABC transporters and 4-coumarate-CoA ligase, exhibited higher expression. Our findings indicate that R. pedestris dynamically regulates different metabolic pathways to cope with varying food resources, which may contribute to the development of effective strategies for managing this pest.
Collapse
Affiliation(s)
| | | | | | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (Z.-L.Z.); (X.-J.W.); (H.-B.L.)
| |
Collapse
|
2
|
Chugunov AO, Dvoryakova EA, Dyuzheva MA, Simonyan TR, Tereshchenkova VF, Filippova IY, Efremov RG, Elpidina EN. Fighting Celiac Disease: Improvement of pH Stability of Cathepsin L In Vitro by Computational Design. Int J Mol Sci 2023; 24:12369. [PMID: 37569743 PMCID: PMC10418366 DOI: 10.3390/ijms241512369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Roughly 1% of the global population is susceptible to celiac disease (CD)-inheritable autoimmune inflammation of the small intestine caused by intolerance to gliadin proteins present in wheat, rye, and barley grains, and called gluten in wheat. Classical treatment is a life-long gluten-free diet, which is constraining and costly. An alternative approach is based upon the development and oral reception of effective peptidases that degrade in the stomach immunogenic proline- and glutamine-rich gliadin peptides, which are the cause of the severe reaction in the intestine. In previous research, we have established that the major digestive peptidase of an insect Tribolium castaneum-cathepsin L-hydrolyzes immunogenic prolamins after Gln residues but is unstable in the extremely acidic environment (pH 2-4) of the human stomach and cannot be used as a digestive aid. In this work, using molecular dynamics simulations, we discover the probable cause of the pH instability of cathepsin L-loss of the catalytically competent rotameric state of one of the active site residues, His 275. To "fix" the correct orientation of this residue, we designed a V277A mutant variant, which extends the range of stability of the peptidase in the acidic environment while retaining most of its activity. We suggest this protein as a lead glutenase for the development of oral medical preparation that fights CD and gluten intolerance in susceptible people.
Collapse
Affiliation(s)
- Anton O. Chugunov
- M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (M.A.D.); (R.G.E.)
- L.D. Landau School of Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| | - Elena A. Dvoryakova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (E.A.D.); (E.N.E.)
| | - Maria A. Dyuzheva
- M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (M.A.D.); (R.G.E.)
- Higher Chemical College of the Russian Academy of Sciences, D. Mendeleev University of Chemical Technology, 125047 Moscow, Russia
| | - Tatyana R. Simonyan
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (T.R.S.); (V.F.T.); (I.Y.F.)
| | - Valeria F. Tereshchenkova
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (T.R.S.); (V.F.T.); (I.Y.F.)
| | - Irina Yu. Filippova
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (T.R.S.); (V.F.T.); (I.Y.F.)
| | - Roman G. Efremov
- M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (M.A.D.); (R.G.E.)
- L.D. Landau School of Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
- Department of Applied Mathematics, National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Elena N. Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (E.A.D.); (E.N.E.)
| |
Collapse
|
3
|
Liu J, Wang Z, Yan H, Teng Y, Shi Q, Chen J, Tang W, Yu W, Peng Y, Xi H, Ma N, Liang D, Li Z, Wu L. Functional identification of two novel variants and a hypomorphic variant in ASS1 from patients with Citrullinemia type I. Front Genet 2023; 14:1172947. [PMID: 37485339 PMCID: PMC10360398 DOI: 10.3389/fgene.2023.1172947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
Background: Citrullinemia type I (CTLN1) is a rare autosomal recessive inborn error of the urea cycle caused by mutations in the gene encoding the arginosuccinate synthetase (ASS1) enzyme. Classic CTLN1 often manifests with acute hyperammonemia and neurological symptoms. Molecular genetic testing is critical for patient diagnosis. Methods: Three unrelated families with clinically suspected CTLN1 were included in this study. Potential pathogenic variants were identified using whole exome sequencing (WES) and validated using Sanger sequencing. Western blotting, quantitative PCR, immunofluorescent staining, and ELISA were used to assess functional changes in candidate ASS1 variants. Results: Five variants were identified, two of which were novel, and one has been reported, but its pathogenicity was not validated. The novel variant c.649-651del (p.P217del) and the 5'UTR variant (c.-4C>T) resulted in a decrease in ASS1 expression at both the protein and transcription levels. The other novel variant, c.1048C>T (p.Q350*), showed a marked decrease in expression at the protein level, with the formation of truncated proteins but an increased transcription. Both c.649_651del (p.P217del) and c.1048C>T (p.Q350*) showed a highly significant reduction in enzyme activity, while c.-4C>T had no effect. Conclusion: We identified two novel variants and a hypomorphic non-coding variant in ASS1 and validated the pathogenicity using functional studies. Our findings contribute to expanding the spectrum of ASS1 variants and understanding the genotype-phenotype relationships of CTLN1.
Collapse
Affiliation(s)
- Jing Liu
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan, China
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Zhongjie Wang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Huiming Yan
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan, China
| | - Yanling Teng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Qingxin Shi
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Jing Chen
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan, China
| | - Wanglan Tang
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan, China
| | - Wenxian Yu
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan, China
| | - Ying Peng
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan, China
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Hui Xi
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan, China
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Changsha, Hunan, China
| | - Na Ma
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan, China
| | - Desheng Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
- Laboratory of Molecular Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| | - Zhuo Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
- Laboratory of Molecular Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| |
Collapse
|
4
|
Kos J. Peptidases: Role and Function in Health and Disease. Int J Mol Sci 2023; 24:ijms24097823. [PMID: 37175526 PMCID: PMC10178584 DOI: 10.3390/ijms24097823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Peptidases represent a large family of hydrolases present in all living organisms, which catalyze the degradation of peptide bonds in different biological processes.
Collapse
Affiliation(s)
- Janko Kos
- Department of Biotechnology, Faculty of Pharmacy, Jožef Stefan Institute, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Błaszczyk F, Sosinka A, Wilczek G, Student S, Rost-Roszkowska M. Effect of gluten on the digestive tract and fat body of Telodeinopus aoutii (Diplopoda). J Morphol 2023; 284:e21546. [PMID: 36533734 DOI: 10.1002/jmor.21546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Adult specimens or larvae of invertebrates used as food for vertebrates are often maintained close to gluten so they might become vectors for cereal proteins. However, the tissues and internal organs can respond differently in animals with different feeding habits. The midgut epithelium might be a first and sufficient barrier preventing uptake and effects of gluten on the whole body, while the fat body is the main organ that accumulates different xenobiotics. Good models for such research are animals that do not feed on gluten-rich products in their natural environment. The project's goal was to investigate alterations in the midgut epithelium and fat body of the herbivorous millipede Telodeinopus aoutii (Diplopoda) and analyze cell death processes activated by gluten. It enabled us to determine whether changes were intensified or reversed by adaptive mechanisms. Adult specimens were divided into control and experimental animals fed with mushrooms supplemented with gluten and analyzed using transmission electron microscopy, flow cytometry, and confocal microscopy. Two organs were isolated for the qualitative and quantitative analysis: the midgut and the fat body. Our study of the herbivorous T. aoutii which does not naturally feed on gluten containing diet showed that continuous and prolonged gluten feeding activates repair processes that inhibit the processes of cell death (apoptosis and necrosis) and induce an increase in cell viability.
Collapse
Affiliation(s)
- Florentyna Błaszczyk
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Agnieszka Sosinka
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Grażyna Wilczek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Sebastian Student
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland.,Biotechnology Center, Silesian University of Technology, Gliwice, Poland
| | - Magdalena Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
6
|
Recombinant Cathepsin L of Tribolium castaneum and Its Potential in the Hydrolysis of Immunogenic Gliadin Peptides. Int J Mol Sci 2022; 23:ijms23137001. [PMID: 35806001 PMCID: PMC9266932 DOI: 10.3390/ijms23137001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Wheat gliadins contain a large amount of glutamine- and proline-rich peptides which are not hydrolyzed by human digestive peptidases and can cause autoimmune celiac disease and other forms of gluten intolerance in predisposed people. Peptidases that efficiently cleave such immunogenic peptides can be used in enzyme therapy. The stored product insect pest Tribolium castaneum efficiently hydrolyzes gliadins. The main digestive peptidase of T. castaneum is cathepsin L, which is from the papain C1 family with post-glutamine cleavage activity. We describe the isolation and characterization of T. castaneum recombinant procathepsin L (rpTcCathL1, NP_001164001), which was expressed in Pichia pastoris cells. The activation of the proenzyme was conducted by autocatalytic processing. The effects of pH and proenzyme concentration in the reaction mixture on the processing were studied. The mature enzyme retained high activity in the pH range from 5.0 to 9.0 and displayed high pH-stability from 4.0 to 8.0 at 20 °C. The enzyme was characterized according to electrophoretic mobility under native conditions, activity and stability at various pH values, a sensitivity to various inhibitors, and substrate specificity, and its hydrolytic effect on 8-, 10-, 26-, and 33-mer immunogenic gliadins peptides was demonstrated. Our results show that rTcCathL1 is an effective peptidase that can be used to develop a drug for the enzyme therapy of various types of gluten intolerance.
Collapse
|