1
|
Tsakireli D, Vandenhole M, Spiros A P, Riga M, Balabanidou V, De Rouck S, Ray J, Zimmer C, Talmann L, Van Leeuwen T, Vontas J. The cytochrome P450 subfamilies CYP392A and CYP392D are key players in acaricide metabolism in Tetranychusurticae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106031. [PMID: 39277360 DOI: 10.1016/j.pestbp.2024.106031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 09/17/2024]
Abstract
The spider mite Tetranychus urticae is a major agricultural pest with a global distribution, extremely diverse host range and a remarkable ability to develop resistance to a wide variety of acaricides. P450 mono-oxygenases have been frequently associated with resistance development in this species. In particular enzymes of the CYP392A-subfamily were shown to metabolize a number of key acaricides, including abamectin, amitraz, fenpyroximate and the active metabolite of pyflubumide. However, transcriptomic studies comparing highly resistant and susceptible populations have often revealed high expression of members of the CYP392D-subfamily, but these have been only poorly studied. Here, we conducted a meta-analysis of gene expression data of 20 populations and identified two key enzymes of this family, CYP392D2 and CYP392D8, whose expression is associated with resistance. We subsequently functionally expressed these enzymes, together with CYP392A11 and CYP392A16 as known metabolizers, and compared their potential to accept a wide diversity of acaricides as substrate. This study overall confirms previous discovered substrates for CYP392A11 and CYP392A16, but also reveals unreported metabolic activity towards new acaricides. These include carbaryl, chlorpyrifos and etoxazole for CYP392A16 and carbaryl, chlorpyrifos and NNI-0711-NH pyflubumide for CYP392A11. For the newly studied CYP392D-family, we show that CYP392D2 metabolizes pyridaben, fenpyroximate, etoxazole and chlorpyrifos, while CYP392D8 metabolizes carbaryl, fenazaquin and tebufenpyrad. Last, we observed that both CYP392A- and CYP392D-subfamily enzymes activate chlorpyrifos to its corresponding oxon. Our study indicates that there is both overlap and specificity in the activity of A- and D-subfamily enzymes against acaricides and model substrates. With the recent advent of highly efficient CRISPR/Cas9 gene editing protocols in T. urticae, the way is now paved to conduct further genetic experiments revealing and quantifying the role of these enzymes in the resistance phenotype in field populations.
Collapse
Affiliation(s)
- Dimitra Tsakireli
- Pesticide Science Lab, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, GR-700 13 Heraklion, Crete, Greece.
| | - Marilou Vandenhole
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, Belgium.
| | | | - Maria Riga
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, GR-700 13 Heraklion, Crete, Greece.
| | - Vasilia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, GR-700 13 Heraklion, Crete, Greece.
| | - Sander De Rouck
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, Belgium.
| | - John Ray
- Syngenta Crop Protection, Berkshire RG42 6EY, Bracknell, United Kingdom.
| | - Christoph Zimmer
- Syngenta Crop Protection, Schaffhauserstrasse 101, 4332 Stein, Switzerland.
| | - Lea Talmann
- Syngenta Crop Protection, Schaffhauserstrasse 101, 4332 Stein, Switzerland.
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, Belgium.
| | - John Vontas
- Pesticide Science Lab, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, GR-700 13 Heraklion, Crete, Greece.
| |
Collapse
|
2
|
Hecker FA, Leggio B, König T, Kim V, Osterland M, Gnutt D, Niehaus K, Geibel S. Cell Painting unravels insecticidal modes of action on Spodoptera frugiperda insect cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105983. [PMID: 39084786 DOI: 10.1016/j.pestbp.2024.105983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 08/02/2024]
Abstract
The "Cell Painting" technology utilizes multiplexed fluorescent staining of various cell organelles, to produce high-content microscopy images of cells for multidimensional phenotype assessment. The phenotypic profiles extracted from those images can be analyzed upon perturbations with biologically active molecules to annotate the mode of action or biological activity by comparison with reference profiles of already known mechanisms of action, ultimately enabling the determination of on-target and off-target effects. This approach is already described in various human cell cultures, the most commonly used being the U2OS cell line, yet allows broad applications in additional areas of chemical-biological research. Here we describe for the first time the application and adaptation of Cell Painting to an insect cell line, the Sf9 cells from Spodoptera frugiperda. By adjusting image acquisition and analysis models, specific phenotypic profiles were obtained in a dose-dependent manner for 20 reference compounds, including representatives for the most relevant insecticidal modes of action categories (nerve & muscle, respiration and growth & development). Through a dimensionality-reduction method, both calculations of phenotypic half maximal inhibition concentration (IC50) values as well as similarity analysis of the obtained profiles by hierarchical clustering were performed. By Cell Painting effects on the phenotype could be obtained at higher sensitivity than in other assay formats, such as cytotoxicity assessments. More importantly, these analyses provide insight into mechanistic determinants of biological activity. Compounds with similar modes of action showed a high degree of proximity in a hierarchical clustering analysis while being distinct from actives with an unrelated mode of action. In essence, we provide strong evidence on the impact of Cell Painting mechanistic understanding of insecticides with regards to determinants of efficacy and safety utilizing an insect cell model system.
Collapse
Affiliation(s)
- Franziska A Hecker
- University Bielefeld, Proteome and Metabolome Research, Bielefeld, Germany
| | - Bruno Leggio
- R&D Disease Control, Bayer SAS, Crop Science Division, Lyon, France
| | - Tim König
- R&D Image-based Screening Systems, Bayer AG, Pharma Division, Wuppertal, Germany
| | - Vladislav Kim
- R&D Machine Learning Research, Bayer AG, Pharma Division, Berlin, Germany
| | - Marc Osterland
- R&D Machine Learning Research, Bayer AG, Pharma Division, Berlin, Germany
| | - David Gnutt
- R&D Image-based Screening Systems, Bayer AG, Pharma Division, Wuppertal, Germany
| | - Karsten Niehaus
- University Bielefeld, Proteome and Metabolome Research, Bielefeld, Germany
| | - Sven Geibel
- R&D Hit Discovery, Bayer AG, Crop Science Division, Monheim, Germany.
| |
Collapse
|
3
|
Li J, Liu J, Peng L, Liu J, Xu L, He J, Sun L, Shen G, He L. Functional analysis of SDR112C1 associated with fenpropathrin tolerance in Tetranychus cinnabarinus (Boisduval). INSECT SCIENCE 2024. [PMID: 38926942 DOI: 10.1111/1744-7917.13408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Short-chain dehydrogenases/reductases (SDRs) are ubiquitously distributed across diverse organisms and play pivotal roles in the growth, as well as endogenous and exogenous metabolism of various substances, including drugs. The expression levels of SDR genes are reportedly upregulated in the fenpropathrin (FEN)-resistant (FeR) strain of Tetranychus cinnabarinus. However, the functions of these SDR genes in acaricide tolerance remain elusive. In this study, the activity of SDRs was found to be significantly higher (2.26-fold) in the FeR strain compared to the susceptible strain (SS) of T. cinnabarinus. A specific upregulated SDR gene, named SDR112C1, exhibited significant overexpression (3.13-fold) in the FeR population compared with that in the SS population. Furthermore, the expression of SDR112C1 showed a significant increase in the response to FEN induction. Additionally, knockdown of the SDR112C1 gene resulted in decreased SDR activity and reduced mite viability against FEN. Importantly, heterologous expression and in vitro incubation assays confirmed that recombinant SDR112C1 could effectively deplete FEN. Moreover, the overexpression of the SDR112C1 gene in Drosophila melanogaster significantly decreased the toxicity of FEN to transgenic fruit flies. These findings suggest that the overexpression of SDR SDR112C1 is a crucial factor contributing to FEN tolerance in T. cinnabarinus. This discovery not only enhances our understanding of SDR-mediated acaricide tolerance but also introduces a new family of detoxification enzymes to consider in practice, beyond cytochrome P450s, carboxyl/choline esterases and glutathione S-transferases.
Collapse
Affiliation(s)
- Jinhang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Jialu Liu
- Key Scientific Research Base of Pest and Mold Control of Heritage Collection (Chongqing China Three Gorges Museum), State Administration of Cultural Heritage, Chongqing, China
| | - Lishu Peng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Jingui Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Lin Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Junfeng He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Longjiang Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Guangmao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| |
Collapse
|
4
|
De Rouck S, Mocchetti A, Dermauw W, Van Leeuwen T. SYNCAS: Efficient CRISPR/Cas9 gene-editing in difficult to transform arthropods. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104068. [PMID: 38171463 DOI: 10.1016/j.ibmb.2023.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
The genome editing technique CRISPR/Cas9 has led to major advancements in many research fields and this state-of-the-art tool has proven its use in genetic studies for various arthropods. However, most transformation protocols rely on microinjection of CRISPR/Cas9 components into embryos, a method which is challenging for many species. Alternatively, injections can be performed on adult females, but transformation efficiencies can be very low as was shown for the two-spotted spider mite, Tetranychus urticae, a minute but important chelicerate pest on many crops. In this study, we explored different CRISPR/Cas9 formulations to optimize a maternal injection protocol for T. urticae. We observed a strong synergy between branched amphipathic peptide capsules and saponins, resulting in a significant increase of CRISPR/Cas9 knock-out efficiency, exceeding 20%. This CRISPR/Cas9 formulation, termed SYNCAS, was used to knock-out different T. urticae genes - phytoene desaturase, CYP384A1 and Antennapedia - but also allowed to develop a co-CRISPR strategy and facilitated the generation of T. urticae knock-in mutants. In addition, SYNCAS was successfully applied to knock-out white and white-like genes in the western flower thrips, Frankliniella occidentalis. The SYNCAS method allows routine genome editing in these species and can be a game changer for genetic research in other hard to transform arthropods.
Collapse
Affiliation(s)
- Sander De Rouck
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Antonio Mocchetti
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.
| |
Collapse
|
5
|
Vandenhole M, Lu X, Tsakireli D, Mermans C, De Rouck S, De Beer B, Simma E, Pergantis SA, Jonckheere W, Vontas J, Van Leeuwen T. Contrasting roles of cytochrome P450s in amitraz and chlorfenapyr resistance in the crop pest Tetranychus urticae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 164:104039. [PMID: 37992878 DOI: 10.1016/j.ibmb.2023.104039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
The molecular mechanisms of amitraz and chlorfenapyr resistance remain only poorly understood for major agricultural pests and vectors of human diseases. This study focusses on a multi-resistant field strain of the crop pest Tetranychus urticae, which could be readily selected in the laboratory to high levels of amitraz and chlorfenapyr resistance. Toxicity experiments using tralopyril, the active toxophore of chlorfenapyr, suggested decreased activation as a likely mechanism underlying resistance. Starting from the same parental strain, transcriptome profiling revealed that a cluster of detoxifying genes was upregulated after amitraz selection, but unexpectedly downregulated after chlorfenapyr selection. Further functional validation associated the upregulation of CYP392A16 with amitraz metabolism and the downregulation of CYP392D8 with reduced activation of chlorfenapyr to tralopyril. Genetic mapping (QTL analysis by BSA) was conducted in an attempt to unravel the genetic mechanisms of expression variation and resistance. This revealed that chlorfenapyr resistance was associated with a single QTL, while 3 QTLs were uncovered for amitraz resistance. Together with the observed contrasting gene expression patterns, we argue that transcriptional regulators most likely underly the distinct expression profiles associated with resistance, but these await further functional validation.
Collapse
Affiliation(s)
- Marilou Vandenhole
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Xueping Lu
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Dimitra Tsakireli
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, GR-700 13, Heraklion, Crete, Greece
| | - Catherine Mermans
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Sander De Rouck
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Berdien De Beer
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Eba Simma
- Department of Biology, College of Natural Sciences, Jimma University, Jimma, Ethiopia
| | - Spiros A Pergantis
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Wim Jonckheere
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
| | - John Vontas
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, GR-11855, Athens, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, GR-700 13, Heraklion, Crete, Greece
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium.
| |
Collapse
|
6
|
Njiru C, Saalwaechter C, Mavridis K, Vontas J, Geibel S, Wybouw N, Van Leeuwen T. The complex II resistance mutation H258Y in succinate dehydrogenase subunit B causes fitness penalties associated with mitochondrial respiratory deficiency. PEST MANAGEMENT SCIENCE 2023; 79:4403-4413. [PMID: 37394630 DOI: 10.1002/ps.7640] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 07/03/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND The acaricides cyflumetofen, cyenopyrafen and pyflubumide inhibit the mitochondrial electron transport chain at complex II [succinate dehydrogenase (SDH) complex]. A target site mutation H258Y was recently discovered in a resistant strain of the spider mite pest Tetranychus urticae. H258Y causes strong cross-resistance between cyenopyrafen and pyflubumide, but not cyflumetofen. In fungal pests, fitness costs associated with substitutions at the corresponding H258 position that confer resistance to fungicidal SDH inhibitors have not been uncovered. Here, we used H258 and Y258 near-isogenic lines of T. urticae to quantify potential pleiotropic fitness effects on mite physiology. RESULTS The H258Y mutation was not associated with consistent significant changes of single generation life history traits and fertility life table parameters. In contrast, proportional Sanger sequencing and droplet digital polymerase chain reaction showed that the frequency of the resistant Y258 allele decreased when replicated 50:50 Y258:H258 experimentally evolving populations were maintained in an acaricide-free environment for approximately 12 generations. Using in vitro assays with mitochondrial extracts from resistant (Y258) and susceptible (H258) lines, we identified a significantly reduced SDH activity (48% lower activity) and a slightly enhanced combined complex I and III activity (18% higher activity) in the Y258 lines. CONCLUSION Our findings suggest that the H258Y mutation is associated with a high fitness cost in the spider mite T. urticae. Importantly, while it is the most common approach, it is clear that only comparing life history traits and life table fecundity does not allow to reliably estimate fitness costs of target site mutations in natural pest populations. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Christine Njiru
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Sven Geibel
- Crop Science Division, Bayer AG, Monheim, Germany
| | - Nicky Wybouw
- Terrestrial Ecology Unit, Department of Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Njiru C, Vandenhole M, Jonckheere W, Wybouw N, Van Leeuwen T. The host plant strongly modulates acaricide resistance levels to mitochondrial complex II inhibitors in a multi-resistant field population of Tetranychus urticae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105591. [PMID: 37945242 DOI: 10.1016/j.pestbp.2023.105591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 11/12/2023]
Abstract
The two-spotted spider mite Tetranychus urticae is a polyphagous pest with an extraordinary ability to develop acaricide resistance. Here, we characterize the resistance mechanisms in a T. urticae population (VR-BE) collected from a Belgian tomato greenhouse, where the grower was unsuccessful in chemically controlling the mite population resulting in crop loss. Upon arrival in the laboratory, the VR-BE population was established both on bean and tomato plants as hosts. Toxicity bioassays on both populations confirmed that the population was highly multi-resistant, recording resistance to 12 out of 13 compounds tested from various mode of action groups. DNA sequencing revealed the presence of multiple target-site resistance mutations, but these could not explain resistance to all compounds. In addition, striking differences in toxicity for six acaricides were observed between the populations on bean and tomato. The highest difference was recorded for the complex II inhibitors cyenopyrafen and cyflumetofen, which were 4.4 and 3.3-fold less toxic for VR-BE mites on tomato versus bean. PBO synergism bioassays suggested increased P450 based detoxification contribute to the host-dependent toxicity. Given the involvement of increased detoxification, we subsequently determined genome-wide gene expression levels of VR-BE on both hosts, in comparison to a reference susceptible population, revealing overexpression of a large set of detoxification genes in VR-BE on both hosts compared to the reference. In addition, a number of mainly detoxification genes with higher expression in VR-BE on tomato compared to bean was identified, including several cytochrome P450s. Together, our work suggests that multi-resistant field populations can accumulate a striking number of target-site resistance mutations. We also show that the host plant can have a profound effect on the P450-associated resistance levels to cyenopyrafen and cyflumetofen.
Collapse
Affiliation(s)
- Christine Njiru
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Marilou Vandenhole
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Wim Jonckheere
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Nicky Wybouw
- Terrestrial Ecology Unit, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium.
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
8
|
De Rouck S, İnak E, Dermauw W, Van Leeuwen T. A review of the molecular mechanisms of acaricide resistance in mites and ticks. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 159:103981. [PMID: 37391089 DOI: 10.1016/j.ibmb.2023.103981] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/12/2023] [Accepted: 06/11/2023] [Indexed: 07/02/2023]
Abstract
The Arachnida subclass of Acari comprises many harmful pests that threaten agriculture as well as animal health, including herbivorous spider mites, the bee parasite Varroa, the poultry mite Dermanyssus and several species of ticks. Especially in agriculture, acaricides are often used intensively to minimize the damage they inflict, promoting the development of resistance. Beneficial predatory mites used in biological control are also subjected to acaricide selection in the field. The development and use of new genetic and genomic tools such as genome and transcriptome sequencing, bulked segregant analysis (QTL mapping), and reverse genetics via RNAi or CRISPR/Cas9, have greatly increased our understanding of the molecular genetic mechanisms of resistance in Acari, especially in the spider mite Tetranychus urticae which emerged as a model species. These new techniques allowed to uncover and validate new resistance mutations in a larger range of species. In addition, they provided an impetus to start elucidating more challenging questions on mechanisms of gene regulation of detoxification associated with resistance.
Collapse
Affiliation(s)
- Sander De Rouck
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Emre İnak
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Department of Plant Protection, Faculty of Agriculture, Ankara University, Dıskapı, 06110, Ankara, Turkiye
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, 9820 Merelbeke, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
9
|
Lu X, Vandenhole M, Tsakireli D, Pergantis SA, Vontas J, Jonckheere W, Van Leeuwen T. Increased metabolism in combination with the novel cytochrome b target-site mutation L258F confers cross-resistance between the Q o inhibitors acequinocyl and bifenazate in Tetranychus urticae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105411. [PMID: 37105638 DOI: 10.1016/j.pestbp.2023.105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Acequinocyl and bifenazate are potent acaricides acting at the Qo site of complex III of the electron transport chain, but frequent applications of these acaricides have led to the development of resistance in spider mites. Target-site resistance caused by mutations in the conserved cd1- and ef-helices of the Qo pocket of cytochrome b has been elucidated as the main resistance mechanism. We therefore monitored Qo pocket mutations in European field populations of Tetranychus urticae and uncovered a new mutation, L258F. The role of this mutation was validated by revealing patterns of maternal inheritance and by the independently replicated introgression in an unrelated susceptible genetic background. However, the parental strain exhibited higher resistance levels than conferred by the mutation alone in isogenic lines, especially for acequinocyl, implying the involvement of strong additional resistance mechanisms. This was confirmed by revealing a polygenic inheritance pattern with classical genetic crosses and via synergism experiments. Therefore, a genome-wide expression analysis was conducted that identified a number of highly overexpressed detoxification genes, including many P450s. Functional expression revealed that the P450 CYP392A11 can metabolize bifenazate by hydroxylation of the ring structure. In conclusion, the novel cytochrome b target-site mutation L258F was uncovered in a recently collected field strain and its role in acequinocyl and bifenazate resistance was validated. However, the high level of resistance in this strain is most likely caused by a combination of target-site resistance and P450-based increased detoxification, potentially acting in synergism.
Collapse
Affiliation(s)
- Xueping Lu
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Links 653, Ghent University, B-9000 Ghent, Belgium.
| | - Marilou Vandenhole
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Links 653, Ghent University, B-9000 Ghent, Belgium.
| | - Dimitra Tsakireli
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece; Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology, Hellas, 100 N. Plastira Street, GR-700 13 Heraklion, Crete, Greece.
| | - Spiros A Pergantis
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece.
| | - John Vontas
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece; Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology, Hellas, 100 N. Plastira Street, GR-700 13 Heraklion, Crete, Greece.
| | - Wim Jonckheere
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Links 653, Ghent University, B-9000 Ghent, Belgium.
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Links 653, Ghent University, B-9000 Ghent, Belgium.
| |
Collapse
|
10
|
Villacis‐Perez E, Xue W, Vandenhole M, De Beer B, Dermauw W, Van Leeuwen T. Intraspecific diversity in the mechanisms underlying abamectin resistance in a cosmopolitan pest. Evol Appl 2023; 16:863-879. [PMID: 37124092 PMCID: PMC10130554 DOI: 10.1111/eva.13542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 03/28/2023] Open
Abstract
Pesticide resistance relies on a myriad of mechanisms, ranging from single mutations to a complex and polygenic architecture, and it involves mechanisms such as target-site insensitivity, metabolic detoxification, or a combination of these, with either additive or synergistic effects. Several resistance mechanisms against abamectin, a macrocyclic lactone widely used in crop protection, have been reported in the cosmopolitan pest Tetranychus urticae. However, it has been shown that a single mechanism cannot account for the high levels of abamectin resistance found across different mite populations. Here, we used experimental evolution combined with bulked segregant analyses to map quantitative trait loci (QTL) associated with abamectin resistance in two genetically unrelated populations of T. urticae. In these two independent QTL mapping experiments, three and four QTLs were identified, of which three were shared between experiments. Shared QTLs contained genes encoding subunits of the glutamate-gated chloride channel (GluCl) and harboured previously reported mutations, including G314D in GluCl1 and G326E in GluCl3, but also novel resistance candidate loci, including DNA helicases and chemosensory receptors. Surprisingly, the fourth QTL, present only in only one of the experiments and thus unique for one resistant parental line, revealed a non-functional variant of GluCl2, suggesting gene knock-out as resistance mechanism. Our study uncovers the complex basis of abamectin resistance, and it highlights the intraspecific diversity of genetic mechanisms underlying resistance in a cosmopolitan pest.
Collapse
Affiliation(s)
- Ernesto Villacis‐Perez
- Department of Plants and Crops, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
- Institute for Biodiversity and Ecosystem Dynamics (IBED)University of Amsterdam (UvA)AmsterdamThe Netherlands
| | - Wenxin Xue
- Department of Plants and Crops, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Marilou Vandenhole
- Department of Plants and Crops, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Berdien De Beer
- Department of Plants and Crops, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
- Plant Sciences UnitFlanders Research Institute for Agriculture, Fisheries and Food (ILVO)MerelbekeBelgium
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| |
Collapse
|
11
|
Trans-driven variation in expression is common among detoxification genes in the extreme generalist herbivore Tetranychus urticae. PLoS Genet 2022; 18:e1010333. [DOI: 10.1371/journal.pgen.1010333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/28/2022] [Accepted: 10/31/2022] [Indexed: 11/15/2022] Open
Abstract
The extreme adaptation potential of the generalist herbivore Tetranychus urticae (the two-spotted spider mite) to pesticides as well as diverse host plants has been associated with clade-specific gene expansions in known detoxifying enzyme families, and with extensive and rapid transcriptional responses. However, how this broad transcriptional potential is regulated remains largely unknown. Using a parental/F1 design in which four inbred strains were crossed to a common inbred strain, we assessed the genetic basis and inheritance of gene expression variation in T. urticae. Mirroring known phenotypic variation in the progenitor strains of the inbreds, we confirmed that the inbred strains we created were genetically distinct, varied markedly in pesticide resistance, and also captured variation in host plant fitness as is commonly observed in this species. By examining differences in gene expression between parents and allele-specific expression in F1s, we found that variation in RNA abundance was more often explained in trans as compared to cis, with the former associated with dominance in inheritance. Strikingly, in a gene ontology analysis, detoxification genes of the cytochrome P450 monooxygenase (CYP) family, as well as dioxygenases (DOGs) acquired from horizontal gene transfer from fungi, were specifically enriched at the extremes of trans-driven up- and downregulation. In particular, multiple CYPs and DOGs with broad substrate-specificities for pesticides or plant specialized compounds were exceptionally highly upregulated as a result of trans-regulatory variation, or in some cases synergism of cis and trans, in the most multi-pesticide resistant strains. Collectively, our findings highlight the potential importance of trans-driven expression variation in genes associated with xenobiotic metabolism and host plant use for rapid adaptation in T. urticae, and also suggests modular control of these genes, a regulatory architecture that might ameliorate negative pleiotropic effects.
Collapse
|
12
|
De Beer B, Vandenhole M, Njiru C, Spanoghe P, Dermauw W, Van Leeuwen T. High-Resolution Genetic Mapping Combined with Transcriptome Profiling Reveals That Both Target-Site Resistance and Increased Detoxification Confer Resistance to the Pyrethroid Bifenthrin in the Spider Mite Tetranychus urticae. BIOLOGY 2022; 11:1630. [PMID: 36358331 PMCID: PMC9687926 DOI: 10.3390/biology11111630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/24/2023]
Abstract
Pyrethroids are widely applied insecticides in agriculture, but their frequent use has provoked many cases of resistance, in which mutations in the voltage-gated sodium channel (VGSC), the pyrethroid target-site, were shown to play a major role. However, for the spider mite Tetranychus urticae, it has also been shown that increased detoxification contributes to resistance against the pyrethroid bifenthrin. Here, we performed QTL-mapping to identify the genomic loci underlying bifenthrin resistance in T. urticae. Two loci on chromosome 1 were identified, with the VGSC gene being located near the second QTL and harboring the well-known L1024V mutation. In addition, the presence of an L925M mutation in the VGSC of a highly bifenthrin-resistant strain and its loss in its derived, susceptible, inbred line indicated the importance of target-site mutations in bifenthrin resistance. Further, RNAseq experiments revealed that genes encoding detoxification enzymes, including carboxyl/choline esterases (CCEs), cytochrome P450 monooxygenases and UDP-glycosyl transferases (UGTs), were overexpressed in resistant strains. Toxicity bioassays with bifenthrin (ester pyrethroid) and etofenprox (non-ester pyrethroid) also indicated a possible role for CCEs in bifenthrin resistance. A selection of CCEs and UGTs were therefore functionally expressed, and CCEinc18 was shown to metabolize bifenthrin, while teturUGT10 could glycosylate bifenthrin-alcohol. To conclude, our findings suggest that both target-site and metabolic mechanisms underlie bifenthrin resistance in T. urticae, and these might synergize high levels of resistance.
Collapse
Affiliation(s)
- Berdien De Beer
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Marilou Vandenhole
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Christine Njiru
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Pieter Spanoghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burg. Van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
13
|
Xue W, Lu X, Mavridis K, Vontas J, Jonckheere W, Van Leeuwen T. The H92R substitution in PSST is a reliable diagnostic biomarker for predicting resistance to mitochondrial electron transport inhibitors of complex I in European populations of Tetranychus urticae. PEST MANAGEMENT SCIENCE 2022; 78:3644-3653. [PMID: 35613098 DOI: 10.1002/ps.7007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Mitochondrial Electron Transport Inhibitors of complex I (METI-I), such as tebufenpyrad and fenpyroximate, are acaricides that have been used extensively to control Tetranychus urticae Koch (Acari: Tetranychidae) for more than 20 years. Because of the ability of this spider mite to rapidly develop acaricide resistance, field (cross-) resistance monitoring and elucidation of resistance mechanisms are extremely important for resistance management (RM). In the present study, 42 European T. urticae field populations were screened for tebufenpyrad and fenpyroximate resistance, and the correlation between resistance and the H92R substitution in PSST was investigated. RESULTS According to the calculated lethal concentration values that kill 90% of the population (LC90 ), tebufenpyrad and fenpyroximate would fail to control many of the collected populations at recommended field rates. Six populations exhibited high to very high resistance levels (200- to over 1950-fold) to both METI-Is. Analysis based on the LC50 values displayed a clear correlation between tebufenpyrad and fenpyroximate resistance, further supporting cross-resistance, which is of great operational importance in acaricide RM. The previously uncovered METI-I target-site mutation H92R in the PSST homologue of complex I (NADH:ubiquinone oxidoreductase) was found with high allele frequencies in populations resistant to tebufenpyrad and fenpyroximate. Synergist assays showed this mutation is not the only factor involved in METI-I resistance and additive or synergistic effects of multiple mechanisms most likely determine the phenotypic strength. CONCLUSIONS The predictive value of resistance by H92R is very high in European populations and offers great potential to be used as a molecular diagnostic marker for METI-I resistance. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenxin Xue
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Links 653, Ghent University, Ghent, Belgium
| | - Xueping Lu
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Links 653, Ghent University, Ghent, Belgium
| | - Konstantinos Mavridis
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology, Crete, Greece
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology, Crete, Greece
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Wim Jonckheere
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Links 653, Ghent University, Ghent, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure Links 653, Ghent University, Ghent, Belgium
| |
Collapse
|