1
|
Dobryakova E, Hafiz R, Iosipchuk O, Sandry J, Biswal B. ALFF response interaction with learning during feedback in individuals with multiple sclerosis. Mult Scler Relat Disord 2023; 70:104510. [PMID: 36706463 DOI: 10.1016/j.msard.2023.104510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/06/2022] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
Amplitude of low-frequency fluctuations (ALFF) is defined as changes of BOLD signal during resting state (RS) brain activity. Previous studies identified differences in RS activation between healthy and multiple sclerosis (MS) participants. However, no research has investigated the relationship between ALFF and learning in MS. We thus examine this here. Twenty-five MS and nineteen healthy participants performed a paired-associate word learning task where participants were presented with extrinsic or intrinsic performance feedback. Compared to healthy participants, MS participants showed higher local brain activation in the right thalamus. We also observed a positive correlation in the MS group between ALFF and extrinsic feedback within the left inferior frontal gyrus, and within the left superior temporal gyrus in association with intrinsic feedback. Healthy participants showed a positive correlation in the right fusiform gyrus between ALFF and extrinsic feedback. Findings suggest that while MS participants do not show a feedback learning impairment compared to the healthy participants, ALFF differences might suggest a general maladaptive pattern of task unrelated thalamic activation and adaptive activation in frontal and temporal regions. Results indicate that ALFF can be successfully used at capturing pathophysiological changes in local brain activation in MS in association with learning through feedback.
Collapse
Affiliation(s)
- Ekaterina Dobryakova
- Center for Traumatic Brain Injury Research, Kessler Foundation, 120 Eagle Rock Ave., East Hanover, NJ, USA
| | | | - Olesya Iosipchuk
- Center for Traumatic Brain Injury Research, Kessler Foundation, 120 Eagle Rock Ave., East Hanover, NJ, USA.
| | - Joshua Sandry
- Psychology Department, Montclair State University, 1 Normal Ave., Montclair, NJ, USA
| | | |
Collapse
|
2
|
Sobczak AM, Bohaterewicz B, Ceglarek A, Zyrkowska A, Fafrowicz M, Slowik A, Wnuk M, Marona M, Nowak K, Zur-Wyrozumska K, Marek T. Brain Under Fatigue – Can Perceived Fatigability in Multiple Sclerosis Be Seen on the Level of Functional Brain Network Architecture? Front Hum Neurosci 2022; 16:852981. [PMID: 35620154 PMCID: PMC9128356 DOI: 10.3389/fnhum.2022.852981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Fatigue is one of the most common symptoms of multiple sclerosis (MS), significantly affecting the functioning of the patients. However, the neural underpinnings of physical and mental fatigue in MS are still vague. The aim of our study was to investigate the functional architecture of resting-state networks associated with fatigue in patients with MS. Methods The sum of 107 high-functioning patients underwent a resting-state scanning session and filled out the 9-item Fatigue Severity Scale (FSS). Based on the FSS score, we identified patients with different levels of fatigue using the cluster analysis. The low-fatigue group consisted of n = 53 subjects, while the high-fatigue group n = 48. The neuroimaging data were analyzed in terms of functional connectivity (FC) between various resting-state networks as well as amplitude of low-frequency fluctuation (ALFF) and fractional amplitude of low-frequency fluctuations (fALFF). Results Two-sample t-test revealed between-group differences in FC of posterior salience network (SN). No differences occurred in default mode network (DMN) and sensorimotor network (SMN). Moreover, differences in fALFF were shown in the right middle frontal gyrus and right superior frontal gyrus, however, no ALFF differences took place. Conclusion Current study revealed significant functional network (FN) architecture between-group differences associated with fatigue. Present results suggest the higher level of fatigue is related to deficits in awareness as well as higher interoceptive awareness and nociception.
Collapse
Affiliation(s)
- Anna Maria Sobczak
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
- *Correspondence: Anna Maria Sobczak,
| | - Bartosz Bohaterewicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
- Department of Psychology of Individual Differences, Psychological Diagnosis, and Psychometrics, Institute of Psychology, University of Social Sciences and Humanities, Warsaw, Poland
| | - Anna Ceglarek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Aleksandra Zyrkowska
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Slowik
- Department of Neurology, Jagiellonian University Collegium Medicum, Kraków, Poland
- Department of Neurology, University Hospital in Krakow, Kraków, Poland
| | - Marcin Wnuk
- Department of Neurology, Jagiellonian University Collegium Medicum, Kraków, Poland
- Department of Neurology, University Hospital in Krakow, Kraków, Poland
| | - Monika Marona
- Department of Neurology, Jagiellonian University Collegium Medicum, Kraków, Poland
- Department of Neurology, University Hospital in Krakow, Kraków, Poland
| | - Klaudia Nowak
- Department of Neurology, Jagiellonian University Collegium Medicum, Kraków, Poland
- Department of Neurology, University Hospital in Krakow, Kraków, Poland
| | - Kamila Zur-Wyrozumska
- Department of Medical Education, Jagiellonian University Medical College, Kraków, Poland
- Department of Neurology, 5th Military Hospital, Kraków, Poland
| | - Tadeusz Marek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
3
|
Plata-Bello J, Plata-Bello A, Pérez-Martín Y, López-Curtis D, Acosta-López S, Modroño C, Concepción-Massip T. Changes in resting-state measures of prostate cancer patients exposed to androgen deprivation therapy. Sci Rep 2021; 11:23350. [PMID: 34857811 PMCID: PMC8639725 DOI: 10.1038/s41598-021-02611-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/10/2021] [Indexed: 11/09/2022] Open
Abstract
The aim of the present work is to describe the differences in rs-fMRI measures (Amplitude of low frequency fluctuations [ALFF], Regional Homogeneity [ReHo] and Functional Connectivity [FC]) between patients exposed to Androgen deprivation therapy (ADT) and a control group. Forty-nine ADT patients and fifteen PC-non-ADT patients (Controls) were included in the study. A neuropsychological evaluation and a resting-state fMRI was performed to evaluate differences in ALFF and ReHo. Region of interest (ROI) analysis was also performed. ROIs were selected among those whose androgen receptor expression (at RNA-level) was the highest. FC analysis was performed using the same ROIs. Higher ALFF in frontal regions and temporal regions was identified in Controls than in ADT patients. In the ROI analysis, higher activity for Controls than ADT patients was shown in the left inferior frontal gyrus and in the left precentral gyrus. Lower ALFF in the right hippocampus and the lateral geniculate nucleus of the right thalamus was identified for Controls than ADT patients. Higher ReHo was observed in Controls in the left parietal-occipital area. Finally, ADT patients presented an increase of FC in more regions than Controls. These differences may reflect an impairment in brain functioning in ADT users.
Collapse
Affiliation(s)
- Julio Plata-Bello
- Department of Neurosurgery, Hospital Universitario de Canarias, CP 38320, S/C de Tenerife, Spain.
- Cognitive Neuroscience Research Group, University of La Laguna, S/C de Tenerife, Spain.
- Neuroscience Department, Hospital Universitario de Canarias, Calle Ofra s/n La Cuesta, La Laguna, CP 38320, S/C de Tenerife, Spain.
| | - Ana Plata-Bello
- Department of Urology, Hospital Universitario de Canarias, CP 38320, S/C de Tenerife, Spain
- Cognitive Neuroscience Research Group, University of La Laguna, S/C de Tenerife, Spain
| | - Yaiza Pérez-Martín
- Department of Neurology, Hospital Universitario de Canarias, CP 38320, S/C de Tenerife, Spain
| | - David López-Curtis
- Cognitive Neuroscience Research Group, University of La Laguna, S/C de Tenerife, Spain
| | - Silvia Acosta-López
- Cognitive Neuroscience Research Group, University of La Laguna, S/C de Tenerife, Spain
| | - Cristián Modroño
- Department of Physiology, Faculty of Medicine, University of La Laguna, CP 38320, S/C de Tenerife, Spain
| | | |
Collapse
|
4
|
Du XF, Liu J, Hua QF, Wu YJ. Relapsing-Remitting Multiple Sclerosis Is Associated With Regional Brain Activity Deficits in Motor- and Cognitive-Related Brain Areas. Front Neurol 2019; 10:1136. [PMID: 31849801 PMCID: PMC6901942 DOI: 10.3389/fneur.2019.01136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/10/2019] [Indexed: 11/14/2022] Open
Abstract
Objective: To identify the abnormal regional spontaneous brain activity associated with relapsing-remitting multiple sclerosis (RRMS) using fractional amplitude of low-frequency fluctuation (fALFF) analysis and their relationships with clinical features. Methods: A total of 26 RRMS (11 males, 15 females; age, 36.58 ± 10.82 years) and 27 status-matched healthy group (HGs; 12 males, 15 females; age, 35.85 ± 12.05 years) underwent an Expanded Disability Status Scale (EDSS) examination. fALFF was applied to evaluate the abnormal regional brain activity associated with RRMS. Pearson's correlation analysis was applied to calculate the correlations between the signal values of brain areas that exhibited abnormal fALFF values and clinical features. Receiver operating characteristic (ROC) curve was performed to evaluate the sensitivity and specificity of those altered brain areas to distinguish between RRMS and HGs. Results: Compared with HGs, RRMS exhibited higher fALFF in the right cerebellum posterior lobe, left orbitofrontal cortex, left dorsolateral prefrontal cortex, bilateral supplementary motor area, and right fusiform gyrus and lower fALFF values in the left hippocampus and right precuneus. ROC revealed that these areas showed two good and five fair AUC values (0.77 ± 0.03, 0.729~0.822). However, four combinations with more than five brain regions received the same best discriminatory power with a sensitivity of 96.3% and a specificity of 88.5%. EDSS revealed a negative correlation with supplementary motor area (r = −0.395, p = 0.046). Conclusions: RRMS is associated with abnormal regional brain activity deficits of motor- and cognitive-related areas. The fALFF parameter may serve as a potential biological marker to discriminate between the two groups.
Collapse
Affiliation(s)
- Xiao-Feng Du
- Department of Radiology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Jiao Liu
- Department of Radiology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Qi-Feng Hua
- Department of Radiology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Yi-Jiao Wu
- Department of Radiology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|