1
|
Hammad AM, Alzaghari LF, Alfaraj M, Lux V, Sunoqrot S. Green Tea Polyphenol Nanoparticles Reduce Anxiety Caused by Tobacco Smoking Withdrawal in Rats by Suppressing Neuroinflammation. TOXICS 2024; 12:598. [PMID: 39195700 PMCID: PMC11360476 DOI: 10.3390/toxics12080598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Repeated exposure to tobacco smoke causes neuroinflammation and neuroplasticity, which correlates with smoking withdrawal-induced anxiety. The purpose of this study was to investigate the anticipated involvement of antioxidant-rich nanoparticles (NPs) prepared by oxidation-triggered polymerization of green tea catechins in impacting these effects in a rat model of tobacco smoke exposure. Exposure to tobacco smoke was carried out for 2 h a day, 5 days a week, for a total of 36 days. Weekly behavioral tests were conducted prior to recommencing the exposure. Following a 20-day exposure period, rats were administered either distilled water or green tea (GT) NPs (20 mg/kg, orally) for an additional 16 days. Our findings revealed that tobacco smoke exposure induced anxiety-like behavior indicative of withdrawal, and this effect was alleviated by GT NPs. Tobacco smoke exposure caused a marked increase in the relative mRNA and protein expression of nuclear factor-kappa B (NF-κB) and reduced the relative mRNA and protein expression of brain-derived neurotrophic factor (BDNF) in the hippocampus (HIP) and hypothalamus (HYP) brain subregions. The intervention of GT NPs effectively inhibited these effects. Our findings demonstrate the potent protective role of GT NPs in reducing withdrawal-induced anxiety-like behavior, neuroinflammation, and neuroplasticity triggered by tobacco smoke exposure.
Collapse
Affiliation(s)
- Alaa M. Hammad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Lujain F. Alzaghari
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Malek Alfaraj
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Vanessa Lux
- Department of Genetic Psychology, Ruhr University Bochum, 44801 Bochum, Germany;
| | - Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
2
|
Amidfar M, Garcez ML, Askari G, Bagherniya M, Khorvash F, Golpour-Hamedani S, de Oliveira J. Role of BDNF Signaling in the Neuroprotective and Memory-enhancing Effects of Flavonoids in Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:984-995. [PMID: 37702162 DOI: 10.2174/1871527323666230912090856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Foods rich in flavonoids are associated with a reduced risk of various chronic diseases, including Alzheimer's disease (AD). In fact, growing evidence suggests that consuming flavonoid- rich foods can beneficially affect normal cognitive function. Animal models have shown that many flavonoids prevent the development of AD-like pathology and improve cognitive deficits. OBJECTIVE Identifying the molecular causes underlying the memory-enhancing effect of flavonoid-rich foods makes it possible to provide the best diet to prevent cognitive decline associated with aging and Alzheimer's disease. Based on the most recent scientific literature, this review article critically examines the therapeutic role of dietary flavonoids in ameliorating and preventing the progression of AD and enhancement of memory with a focus on the role of the BDNF signaling pathway. METHODS The databases of PubMed, Web of Science, Google Scholar, and Scopus were searched up to March 2023 and limited to English language. Search strategies were using the following keywords in titles and abstracts: (Flavonoid-rich foods OR Flavonoids OR Polyphenols); AND (Brain-Derived Neurotrophic Factor OR BDNF OR CREB OR) AND (Alzheimer's disease OR memory OR cognition OR). RESULTS Flavonoid-rich foods including green tea, berries, curcumin and pomegranate exert their beneficial effects on memory decline associated with aging and Alzheimer's disease mostly through the direct interaction with BDNF signaling pathway. CONCLUSION The neuroprotective effects of flavonoid-rich foods through the CREB-BDNF mechanism have the potential to prevent or limit memory decline due to aging and Alzheimer's disease, so their consumption throughout life may prevent age-related cognitive impairment.
Collapse
Affiliation(s)
- Meysam Amidfar
- Nutrition and Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michelle Lima Garcez
- Graduate Program of Research and Extension (CEPEG), University Center of Espirito Santo, Espírito Santo, Brazil
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Golpour-Hamedani
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jade de Oliveira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
3
|
Lei L, Luo Y, Kang D, Yang F, Meng D, Wang JZ, Liu R, Wang X, Li HL. Gypenoside IX restores Akt/GSK-3β pathway and alleviates Alzheimer's disease-like neuropathology and cognitive deficits. Aging (Albany NY) 2023; 15:14172-14191. [PMID: 38095632 PMCID: PMC10756109 DOI: 10.18632/aging.205295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023]
Abstract
The main pathological changes of Alzheimer's disease (AD), a progressive neurodegenerative disorder, include senile plaque (deposited by amyloid beta), neurofibrillary tangle (formed by paired helical filaments composed of hyperphosphorylated tau), and massive loss of neurons. Currently there is a lack of ideal drugs to halt AD progression. Gypenosides (GPs), a kind of natural product, possesses potential therapeutic effects for neurodegenerative diseases, including AD. However, the specific role and mechanism of GPs for AD remain unclear. In the current study, we used staurosporine (STP), an inducer of apoptosis and causing tau hyperphosphorylation, to mimic AD models, and explored the role and mechanism of Gypenoside IX (one of the extracts of Gynostemma, GP for short name in our experiments) in STP treated primary hippocampal neurons and rats. We found STP not only increased apoptosis and tau hyperphosphorylation, but also significantly increased Aβ production, resulting in synaptic dysfunction and cognitive decline in mimic AD models by STP. GP was found to rescue apoptosis and cognitive impairments caused by STP treatment. Moreover, GP recovered the decreased synaptic proteins PSD95, Synaptophysin and GluR2, and blocked dendritic spine loss. Interestingly, GP decreased the STP induced tau hyperphosphorylation at different sites including S-199, S-202, T-205, T-231, S-262, S-396, and S-404, and at the same time decreased Aβ production through down-regulation of BACE1 and PS1. These effects in STP treated primary hippocampal neurons and rats were accompanied with a restoration of AKT/GSK-3β signaling axis with GP treatment, supporting that dysregulation of AKT/GSK-3β pathway might be involved in STP related AD pathogenesis. The results from our research proved that GP might be a potential candidate compound to reduce neuronal damage and prevent the cognitive decline in AD.
Collapse
Affiliation(s)
- Ling Lei
- School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Yong Luo
- School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dongkun Kang
- School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fumin Yang
- School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dongli Meng
- School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian-Zhi Wang
- School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Rong Liu
- School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Xiaochuan Wang
- School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Hong-Lian Li
- School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Kooshki L, Zarneshan SN, Fakhri S, Moradi SZ, Echeverria J. The pivotal role of JAK/STAT and IRS/PI3K signaling pathways in neurodegenerative diseases: Mechanistic approaches to polyphenols and alkaloids. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154686. [PMID: 36804755 DOI: 10.1016/j.phymed.2023.154686] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Neurodegenerative diseases (NDDs) are characterized by progressive neuronal dysfunctionality which results in disability and human life-threatening events. In recent decades, NDDs are on the rise. Besides, conventional drugs have not shown potential effectiveness to attenuate the complications of NDDs. So, exploring novel therapeutic agents is an urgent need to combat such disorders. Accordingly, growing evidence indicates that polyphenols and alkaloids are promising natural candidates, possessing several beneficial pharmacological effects against diseases. Considering the complex pathophysiological mechanisms behind NDDs, Janus kinase (JAK), insulin receptor substrate (IRS), phosphoinositide 3-kinase (PI3K), and signal transducer and activator of transcription (STAT) seem to play critical roles during neurodegeneration/neuroregeneration. In this line, modulation of the JAK/STAT and IRS/PI3K signaling pathways and their interconnected mediators by polyphenols/alkaloids could play pivotal roles in combating NDDs, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), stroke, aging, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), depression and other neurological disorders. PURPOSE Thus, the present study aimed to investigate the neuroprotective roles of polyphenols/alkaloids as multi-target natural products against NDDs which are critically passing through the modulation of the JAK/STAT and IRS/PI3K signaling pathways. STUDY DESIGN AND METHODS A systematic and comprehensive review was performed to highlight the modulatory roles of polyphenols and alkaloids on the JAK/STAT and IRS/PI3K signaling pathways in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including Scopus, PubMed, ScienceDirect, and associated reference lists. RESULTS In the present study 141 articles were included from a total of 1267 results. The results showed that phenolic compounds such as curcumin, epigallocatechin-3-gallate, and quercetin, and alkaloids such as berberine could be introduced as new strategies in combating NDDs through JAK/STAT and IRS/PI3K signaling pathways. This is the first systematic review that reveals the correlation between the JAK/STAT and IRS/PI3K axis which is targeted by phytochemicals in NDDs. Hence, this review highlighted promising insights into the neuroprotective potential of polyphenols and alkaloids through the JAK/STAT and IRS/PI3K signaling pathway and interconnected mediators toward neuroprotection. CONCLUSION Amongst natural products, phenolic compounds and alkaloids are multi-targeting agents with the most antioxidants and anti-inflammatory effects possessing the potential of combating NDDs with high efficacy and lower toxicity. However, additional reports are needed to prove the efficacy and possible side effects of natural products.
Collapse
Affiliation(s)
- Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Javier Echeverria
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Manosso LM, Arent CO, Borba LA, Abelaira HM, Réus GZ. Natural Phytochemicals for the Treatment of Major Depressive Disorder: A Mini-Review of Pre- and Clinical Studies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:237-254. [PMID: 35352639 DOI: 10.2174/1570159x20666220329143804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/16/2022]
Abstract
Major Depressive Disorder (MDD) is a common mental illness that causes significant disability and declining quality of life. An overlap of multiple factors can be involved in the pathophysiology of this mood disorder, including increased inflammation and oxidative stress, change in neurotransmitters, decreased brain-derived neurotrophic factor (BDNF), activation of the hypothalamicpituitary- adrenal (HPA) axis, and changes in the microbiota-gut-brain axis. Although the classic treatment for MDD is safe, it is far from ideal, with delay to start the best clinic, side effects, and a large number of non-responses or partial-responses. Therefore, other alternatives are being studied to improve depressive symptoms, and, among them, the role of phytochemicals in food stands out. This mini-review will discuss the main phytochemicals present in foods with clinical and preclinical studies showing benefits for MDD treatment. In addition, the main mechanisms of action that are being proposed for each of these compounds will be addressed.
Collapse
Affiliation(s)
- Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Camila O Arent
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Laura A Borba
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Helena M Abelaira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| |
Collapse
|
6
|
Wang J, Yu Z, Hu Y, Li F, Huang X, Zhao X, Tang Y, Fang S, Tang Y. EGCG promotes the sensory function recovery in rats after dorsal root crush injury by upregulating KAT6A and inhibiting pyroptosis. Transl Neurosci 2023; 14:20220326. [PMID: 38152093 PMCID: PMC10751571 DOI: 10.1515/tnsci-2022-0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/29/2023] Open
Abstract
Dorsal root injury usually leads to irreversible sensory function loss and lacks effective treatments. (-)-epigallocatechin-3-gallate (EGCG) is reported to exert neuroprotective roles in the nervous systems. However, the function of EGCG in treating dorsal root injury remains unclear. Hence, we built the dorsal root crush injury (DRCI) rat model to be treated with EGCG, followed by the western blot, Enzyme-linked immunosorbent assay, and sensory behavior tests. We observed that EGCG can upregulate the Lysine acetyltransferase 6A (KAT6A) level and inhibit the pyroptosis, indicated by downregulated gasdermin-D, caspase-1, and interleukin 18 protein levels, and alleviate the neuropathic pain, indicated by the decreased paw withdraw threshold in Plantar test and decreased paw withdraw latency in von Frey test, and downregulated calcitonin gene-related peptide, nerve growth factor, and c-Fos protein levels. But EGCG cannot alleviate the neuropathic pain when the KAT6A was inhibited by CTX-0124143 and pyroptosis was activated by Miltirone. These combined results indicated that EGCG can promote the sensory function recovery in rats after DRCI via upregulating KAT6A and inhibiting pyroptosis, laying the foundation for EGCG to be a novel candidate for the treatment of dorsal root injury.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, 423000, China
- School of Basic Medicine, Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Zuer Yu
- School of Basic Medicine, Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Yichun Hu
- School of Basic Medicine, Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Fuyu Li
- School of Basic Medicine, Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Xiaoyu Huang
- School of Basic Medicine, Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Xiangyue Zhao
- School of Basic Medicine, Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Yaqi Tang
- School of Basic Medicine, Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Shujuan Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Yinjuan Tang
- School of Basic Medicine, Xiangnan University, Chenzhou, Hunan, 423000, China
| |
Collapse
|
7
|
Zhang D, Yu Z, Zhao W, Liu J. Assessment of the anti-tumor activity of cyanidin-3-O-arabinoside from apple against APN, JAK, and EZH2 target proteins. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Song C, Zhang Y, Cheng L, Shi M, Li X, Zhang L, Zhao H. Tea polyphenols ameliorates memory decline in aging model rats by inhibiting brain TLR4/NF-κB inflammatory signaling pathway caused by intestinal flora dysbiosis. Exp Gerontol 2021; 153:111476. [PMID: 34265410 DOI: 10.1016/j.exger.2021.111476] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022]
Abstract
AIMS Tea is a rich source of pharmacologically active molecules that has been suggested to provide a variety of health benefits. However, its mechanism of action in aging-related intestinal flora dysbiosis mediated neuroinflammation is still unclear. This study aimed to explore whether tea polyphenols (TP) can improve memory by regulating intestinal flora mediated neuroinflammation in aging model rats. METHODS Ovariectomy (OVX) combined with D-galactose injection was used to establish aging rats related to menopause. The rats were divided into Sham control group, Aging model group, TP 75 mg/kg, 150 mg/kg, 300 mg/kg groups and VE group. After 12 weeks of intervention, the shuttle box test and Y maze test were used to check the memory of rats. The composition of intestinal flora was assessed by 16S rRNA sequencing technology. HE staining and ELISA were used to detect intestinal epithelial morphology and permeability, respectively. TLR4/NF-κB inflammation pathway related indicators were investigated by western blot, and the microglia activation in rat hippocampal tissue was checked by immunofluorescence. RESULTS In the shuttle box test and the Y maze test, compared with the Sham control group, the memory of Aging model rats was significantly declined. It was observed that the intestinal flora of Aging model rats was dysbiosis, the permeability of the intestinal epithelium was increased. Further experimental results showed that the expression of TLR4/NF-κB inflammatory pathway related proteins in the hippocampus were increased, and the excessive activation of microglia was observed. The beneficial effects of TP intervention have been found to prevent memory decline and significantly improve brain inflammation induced by intestinal flora dysbiosis, and TP 300 mg/kg showed a more obvious advantage than TP 75 mg/kg. TP 300 mg/kg can significantly improve the behavior of rats, improve the composition and diversity of the intestinal flora, and the shape and function of the intestinal epithelium. By reversing the increased expression levels of TLR4, IRAK, p-IκBα and nuclear NF-κB p65 proteins in the hippocampus of Aging model rats, the activation of microglia in the CA1, CA3 and Dentate gyrus (DG) sub-regions of the hippocampus can be inhibited. CONCLUSION TP inhibits the brain TLR4/NF-κB inflammatory signal pathway caused by the dysbiosis of intestinal flora, which may be one of the mechanisms to improve the memory decline in aging model rats.
Collapse
Affiliation(s)
- Chenmeng Song
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Yusen Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Le Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Mengqian Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Xuemin Li
- Center for Disease Control and Prevention in Shanxi Province, Taiyuan, Shanxi 030012, PR China
| | - Luping Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Haifeng Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China.
| |
Collapse
|
9
|
Sarkar P, Jayaraj P, Patwardhan K, Yeole S, Das S, Somaiya Y, Desikan R, Thirumurugan K. In Silico Analysis to Link Insulin Resistance, Obesity and Ageing with Alzheimer's Disease. J Mol Neurosci 2021; 71:2608-2617. [PMID: 34227035 DOI: 10.1007/s12031-021-01875-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/16/2021] [Indexed: 01/09/2023]
Abstract
The process of ageing accompanies several metabolic diseases. With ageing, fats accumulate to increase the visceral and abdominal adiposity leading to hyperinsulinemia, insulin resistance, obesity and several other diseases. Drosophila melanogaster is often used to study the ageing process and its related disorders. Therefore, in this study, we performed an in silico analysis to relate the process of ageing and insulin resistance. We analysed the data of insulin-resistant Drosophila from the GEO database and compared it with the data from the literature survey. We observed that 98 genes were common in both the models, and they showed gene modulations related to metabolic pathways, fatty acid metabolism, insulin resistance and neural receptor-ligand binding pathways. Analysis of the REACTOME database against human data revealed that the TRKB signalling pathway is commonly affected. The TRKB-mediated BDNF pathway is a major regulator of memory loss. We further analysed the common genes in Alzheimer's disease and compared the fly data with human data to identify the diseases related to these common genes. Then, we performed a literature survey to provide protective mechanisms for the TRKB signalling pathway activation, mediated through polyphenols. We treated the flies with sesamol-conjugated lipoic acid derivative (a phenolic compound) at hormetic doses to evaluate its effect on the memory of flies.
Collapse
Affiliation(s)
- Priyanka Sarkar
- Structural Biology Lab, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Premkumar Jayaraj
- Technology Tower, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Ketaki Patwardhan
- Structural Biology Lab, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Samiksha Yeole
- Structural Biology Lab, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Sourajit Das
- Structural Biology Lab, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Yash Somaiya
- Structural Biology Lab, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Rajagopal Desikan
- Technology Tower, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Kavitha Thirumurugan
- Structural Biology Lab, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
10
|
Zhang Z, Zhang Y, Li J, Fu C, Zhang X. The Neuroprotective Effect of Tea Polyphenols on the Regulation of Intestinal Flora. Molecules 2021; 26:molecules26123692. [PMID: 34204244 PMCID: PMC8233780 DOI: 10.3390/molecules26123692] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Tea polyphenols (TPs) are the general compounds of natural polyhydroxyphenols extracted in tea. Although a large number of studies have shown that TPs have obvious neuroprotective and neuro repair effects, they are limited due to the low bioavailability in vivo. However, TPs can act indirectly on the central nervous system by affecting the “microflora–gut–brain axis”, in which the microbiota and its composition represent a factor that determines brain health. Bidirectional communication between the intestinal microflora and the brain (microbe–gut–brain axis) occurs through a variety of pathways, including the vagus nerve, immune system, neuroendocrine pathways, and bacteria-derived metabolites. This axis has been shown to influence neurotransmission and behavior, which is usually associated with neuropsychiatric disorders. In this review, we discuss that TPs and their metabolites may provide benefits by restoring the imbalance of intestinal microbiota and that TPs are metabolized by intestinal flora, to provide a new idea for TPs to play a neuroprotective role by regulating intestinal flora.
Collapse
Affiliation(s)
- Zhicheng Zhang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
- Taizhou Biomedical Industry Research Institute Co., Ltd., Taizhou 317000, China
- College of Life Sciences, Taizhou University, Taizhou 317000, China
| | - Yuting Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
| | - Junmin Li
- Taizhou Biomedical Industry Research Institute Co., Ltd., Taizhou 317000, China
- College of Life Sciences, Taizhou University, Taizhou 317000, China
- Correspondence: (J.L.); (C.F.); (X.Z.)
| | - Chengxin Fu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
- Correspondence: (J.L.); (C.F.); (X.Z.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
- Correspondence: (J.L.); (C.F.); (X.Z.)
| |
Collapse
|
11
|
Brain-Derived Neurotrophic Factor Signaling in the Pathophysiology of Alzheimer's Disease: Beneficial Effects of Flavonoids for Neuroprotection. Int J Mol Sci 2021; 22:ijms22115719. [PMID: 34071978 PMCID: PMC8199014 DOI: 10.3390/ijms22115719] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022] Open
Abstract
The function of the brain-derived neurotrophic factor (BDNF) via activation through its high-affinity receptor Tropomyosin receptor kinase B (TrkB) has a pivotal role in cell differentiation, cell survival, synaptic plasticity, and both embryonic and adult neurogenesis in central nervous system neurons. A number of studies have demonstrated the possible involvement of altered expression and action of the BDNF/TrkB signaling in the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD). In this review, we introduce an essential role of the BDNF and its downstream signaling in neural function. We also review the current evidence on the deregulated the BDNF signaling in the pathophysiology of AD at gene, mRNA, and protein levels. Further, we discuss a potential usefulness of small compounds, including flavonoids, which can stimulate BDNF-related signaling as a BDNF-targeting therapy.
Collapse
|
12
|
Wu HT, Yu Y, Li XX, Lang XY, Gu RZ, Fan SR, Fang X, Bai JP, Lan R, Qin XY. Edaravone attenuates H 2O 2 or glutamate-induced toxicity in hippocampal neurons and improves AlCl 3/D-galactose induced cognitive impairment in mice. Neurotoxicology 2021; 85:68-78. [PMID: 34004234 DOI: 10.1016/j.neuro.2021.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/30/2021] [Accepted: 05/12/2021] [Indexed: 12/17/2022]
Abstract
Edaravone (Eda) is a free radical scavenger used in clinical trials for the treatment of ischemic stroke and amyotrophic lateral sclerosis. However, how Eda exerts its neuroprotective effects remains to be elucidated. We investigated the neuroprotective effects of Eda in cultured hippocampal neurons and in a mouse model of AlCl3/D-galactose-induced cognitive impairment. Eda protected hippocampal neurons by eliminating H2O2 or glutamate-induced toxicity, leading to decreased cell viability and neurite shortening. Consistently, Eda restored impaired levels of BDNF, FGF2 and their associated signaling axes (including TrkB, p-Akt and Bcl-2) to attenuate neuronal death. In a mouse model of chemically-induced cognitive impairment, Eda restored the levels of BDNF, FGF2 and TrkB/Akt signaling axis to attenuate neuronal apoptosis, thereby ameliorating cognitive impairment. Meanwhile, the pro-inflammation was eliminated due to the restoration of pro-inflammatory factors such as TNF-α, IL-6, IL-1β, and NOS2. In summary, Eda is an effective drug for protecting neurons from neurotoxic injury. BDNF, FGF2, and their regulated pathways may be potential therapeutic targets for neuroprotection.
Collapse
Affiliation(s)
- Huan-Tong Wu
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center for Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yun Yu
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center for Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xi-Xi Li
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center for Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xiu-Yuan Lang
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center for Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Run-Ze Gu
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center for Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Sheng-Rui Fan
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center for Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xin Fang
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center for Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jin-Peng Bai
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center for Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Rongfeng Lan
- Department of Cell Biology & Medical Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| | - Xiao-Yan Qin
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center for Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
13
|
Opportunities and challenges for the nanodelivery of green tea catechins in functional foods. Food Res Int 2021; 142:110186. [PMID: 33773663 DOI: 10.1016/j.foodres.2021.110186] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
Green tea, the least processed tea product, is scientifically known for its rich antioxidant content originating from polyphenols, especially catechins. The most potent green tea catechin is epigallocatechin-3-gallate (EGCG), which is responsible for a wide range of health benefits including anticancer, antidiabetics, and anti-inflammatory properties. However, green tea catechins (GTCs) are very labile under both environmental and gastrointestinal conditions; their chemical stability and bioavailability primarily depend on the processing and formulation conditions. Nanocarriers can protect GTCs against such conditions, and consequently, can be applicable for designing nanodelivery systems suitable for GTCs. In this review, the latest findings about both opportunities and limitations for the nanodelivery of GTCs and their incorporation into various functional food products are discussed. The scientific findings so far confirm that nanodelivery of GTCs can be an efficient approach towards the enhancement of their health-promoting effects with a minimal dose, controlled and targeted release, lessening the dose-related toxicity, and the efficient incorporation into functional foods. However, further investigation is yet needed to fully explain the cellular mechanisms of action of GTCs on human health and to elucidate the effect of encapsulation on their bioefficacy using well-designed, systematic, long-term, and large-scale clinical interventions. There also exists a substantial concern regarding the safety of the manufactured nanoparticles, their absorption, and the associated release mechanisms.
Collapse
|