Zhang Y, Ballesteros ME, Schöneich C. Photo-induced site-specific oxidative fragmentation of IgG1 mediated by iron(III)-containing histidine buffer: Mechanistic studies and excipient effects.
Eur J Pharm Biopharm 2023;
190:121-130. [PMID:
37482364 DOI:
10.1016/j.ejpb.2023.07.011]
[Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
Fragmentation may compromise the clinical efficacy and safety profile of monoclonal antibodies (mAbs). We recently reported that Fe(III)-containing histidine (His) buffer mediates site-specific mAb fragmentation within the Fc domain when exposed to visible light (Y. Zhang and C. Schöneich, Mol. Pharm. 2023, 20, 650-662). Here, we show that this fragmentation proceeds even more efficiently under near-UV light. Several formulation strategies were applied in an attempt to reduce the photo-induced fragmentation. In solution formulations, the fragmentation can be mitigated by reducing the concentration of His buffer, adding Fe(III)-chelating agents, and replacing His with other amino acids. Fragmentation can be almost completely inhibited by formulating the protein in the lyophilized state. Mechanistically, His plays a critical role in the fragmentation process, likely due to its affinity for Fe(II), driving a photo-redox reaction towards product formation.
Collapse