1
|
Drev M, Brodnik H, Grošelj U, Perdih F, Svete J, Štefane B, Požgan F. 2-Bromopyridines as Versatile Synthons for Heteroarylated 2-Pyridones via Ru(II)-Mediated Domino C-O/C-N/C-C Bond Formation Reactions. Molecules 2024; 29:4418. [PMID: 39339413 PMCID: PMC11433726 DOI: 10.3390/molecules29184418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
A novel methodology for the synthesis of 2-pyridones bearing a 2-pyridyl group on nitrogen and carbon atoms, starting from 2-bromopyridines, was developed employing a simple Ru(II)-KOPiv-Na2CO3 catalytic system. Unsubstituted 2-bromopyridine was successfully converted to the penta-heteroarylated 2-pyridone product using this method. Preliminary mechanistic studies revealed a possible synthetic pathway leading to the multi-heteroarylated 2-pyridone products, involving consecutive oxygen incorporation, a Buchwald-Hartwig-type reaction, and C-H bond activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Franc Požgan
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia (F.P.); (J.S.)
| |
Collapse
|
2
|
Synthesis and photobiological evaluation of Ru(II) complexes with expanded chelate polypyridyl ligands. J Inorg Biochem 2023; 238:112031. [PMID: 36327501 DOI: 10.1016/j.jinorgbio.2022.112031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Photoreactive Ru(II) complexes capable of ejecting ligands have been used extensively for photocaging applications and for the creation of "photocisplatin" reagents. The incorporation of distortion into the structure of the coordination complex lowers the energy of dissociative excited states, increasing the yield of the photosubstitution reaction. While steric clash between ligands induced by adding substituents at the coordinating face of the ligand has been extensively utilized, a lesser known, more subtle approach is to distort the coordination sphere by altering the chelate ring size. Here a systematic study was performed to alter metal-ligand bond lengths, angles, and to cause intraligand distortion by introducing a "linker" atom or group between two pyridine rings. The synthesis, photochemistry, and photobiology of five Ru(II) complexes containing CH2, NH, O, and S-linked dipyridine ligands was investigated. All systems where stable in the dark, and three of the five were photochemically active in buffer. While a clear periodic trend was not observed, this study lays the foundation for the creation of photoactive systems utilizing an alternative type of distortion to facilitate photosubstitution reactions.
Collapse
|
3
|
Liao C, Li J, Chen X, Lu J, Liu Q, Chen L, Huang Y, Li Y. Selective synthesis of pyridyl pyridones and oxydipyridines by transition-metal-free hydroxylation and arylation of 2-fluoropyridine derivatives. Org Biomol Chem 2020; 18:1185-1193. [PMID: 31989995 DOI: 10.1039/c9ob02661d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An efficient protocol for the construction of various pyridyl pyridone and oxydipyridine derivatives through a hydroxylation and arylation tandem reaction of 2-fluoropyridines is reported. Under simple transition-metal-free conditions, the reaction provided a series of products in good to excellent yields, and their structures were confirmed by crystal diffraction analysis. Furthermore, the controlling effect of 6-position substituents on the highly selective synthesis of pyridone and oxydipyridine was studied.
Collapse
Affiliation(s)
- Chunshu Liao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Jianrong Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Xiaoqiong Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Jingjun Lu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Qiang Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China. and Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lu Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Yubing Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 China.
| |
Collapse
|
4
|
Krause JA, Zhao D, Chatterjee S, Falcon R, Stoltz K, Warren JC, Wiswell SE, Connick WB, Collins SN. In-house and synchrotron X-ray diffraction studies of 2-phenyl-1,10-phenanthroline, protonated salts, complexes with gold(III) and copper(II), and an orthometallation product with palladium(II). ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2014; 70:260-6. [PMID: 24594713 DOI: 10.1107/s2053229614001843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/25/2014] [Indexed: 11/10/2022]
Abstract
Different salts of the 2-phenyl-1,10-phenanthrolin-1-ium cation, (pnpH)(+), are obtained by reacting 2-phenyl-1,10-phenanthroline (pnp), C18H12N2, (I), with a variety of anions, such as hexafluoridophosphate, C18H13N2(+)·PF6(-), (II), trifluoromethanesulfonate, C18H13N2(+)·CF3SO3(-), (III), tetrachloridoaurate, (C18H13N2)[AuCl4], (IV), and bromide (as the dihydrate), C18H13N2(+)·Br(-)·2H2O, (V). Compound (I) crystallizes with Z' = 2, with both independent molecules adopting a coplanar conformation. In (II)-(IV), a hydrogen bond exists between the cation and anion, while one of the lattice water molecules serves as a hydrogen-bonded bridge between the cation and anion in (V). Reaction of (I) with HAuCl4 gives the salt complex (IV); however, reaction with KAuCl4 produces the monodentate complex trichlorido(2-phenyl-1,10-phenanthroline-κN(10))gold(III), [AuCl3(C18H12N2)], (VI). Dichlorido(2-phenyl-1,10-phenanthroline-κ(2)N,N')copper(II), [CuCl2(C18H12N2)], (VII), results from the reaction of CuCl2·2H2O and (I), in which the Cu(II) center adopts a tetrahedrally distorted square-planar geometry. The pendent phenyl ring twists to a bisecting position relative to the phenanthroline plane. The square-planar Pd(II) complex, bromido[2-(phenanthrolin-2-yl)phenyl-κ(3)C(1),N,N']palladium(II), [PdBr(C18H11N2)], (VIII), is obtained from the reaction of (I) with [PdCl2(cycloocta-1,5-diene)], followed by addition of bromine. A coplanar geometry for the pendent ring is adopted as a result of the tridentate bonding motif.
Collapse
Affiliation(s)
- Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, USA
| | - Daoli Zhao
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, USA
| | - Sayandev Chatterjee
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, USA
| | - Roland Falcon
- Department of Chemistry, College of Wooster, Wooster, OH 44691, USA
| | - Kristen Stoltz
- Department of Chemistry, College of Wooster, Wooster, OH 44691, USA
| | - John C Warren
- Department of Chemistry, College of Wooster, Wooster, OH 44691, USA
| | - Sara E Wiswell
- Department of Chemistry, College of Wooster, Wooster, OH 44691, USA
| | - William B Connick
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, USA
| | | |
Collapse
|
5
|
McKeown BA, Gonzalez HE, Michaelos T, Gunnoe TB, Cundari TR, Crabtree RH, Sabat M. Control of Olefin Hydroarylation Catalysis via a Sterically and Electronically Flexible Platinum(II) Catalyst Scaffold. Organometallics 2013. [DOI: 10.1021/om400390e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Bradley A. McKeown
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Hector Emanuel Gonzalez
- Center for Advanced Scientific
Computing and Modeling (CASCaM), Department of Chemistry and Energy Sciences Institute, University of North Texas, Denton, Texas
76203, United States
| | - Thoe Michaelos
- Department of Chemistry and Energy Sciences
Institute, Yale University, New Haven, Connecticut 06520, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Thomas R. Cundari
- Center for Advanced Scientific
Computing and Modeling (CASCaM), Department of Chemistry and Energy Sciences Institute, University of North Texas, Denton, Texas
76203, United States
| | - Robert H. Crabtree
- Department of Chemistry and Energy Sciences
Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Michal Sabat
- Nanoscale Materials Characterization
Facility, Materials Science and
Engineering Department, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
6
|
Bakir M, McDermot C, Johnson T. Spectroscopic, and electrochemical studies of [MCl2(η2-N,N-dpksc)] (M=Zn, Cd, Hg and dpksc=di-2-pyridylketone semicarbazone). J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.02.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Bakir M, Green O. Rhenium tricarbonyl chloro of di-2-pyridylketone 4-aminobenzoyl hydrazone (dpk4abh), fac-[Re(CO)3(κ2-N,N-dpk4abh)Cl]: Synthesis, spectroscopic and electrochemical properties. J Mol Struct 2011. [DOI: 10.1016/j.molstruc.2011.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|