1
|
Martinez Fernandez J, Haji Seyed Javadi A, Teat SJ, Cundari TR, Tilley TD. Synthetically Reversible, Proton-Mediated Nitrite N-O Bond Cleavage at a Dicopper Site. J Am Chem Soc 2024; 146:34962-34969. [PMID: 39655620 DOI: 10.1021/jacs.4c14642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A monocationic dicopper(I,I) nitrite complex [Cu2(μ-κ1:κ1-O2N)DPFN][NTf2] (2) (DPFN = 2,7-bis(fluoro-di(2-pyridyl)methyl)-1,8-naphthyridine, NTf2- = N(SO2CF3)2-), was synthesized by treatment of a dicopper acetonitrile complex, [Cu2(μ-MeCN)DPFN][NTf2]2 (1), with tetrabutylammonium nitrite ([nBu4N][NO2]). DFT calculations indicate that 2 is one of three linkage isomers that are close in energy and presumably accessible in solution. Reaction of the μ-κ1:κ1-O2N complex with p-TolSH produces nitrous acid (HONO) and the corresponding dicopper thiolate species via an acid-base exchange reaction. Notably, treatment of 2 with HNTf2 results in N-O bond cleavage in the putative, HONO-ligated complex to form the more thermodynamically favorable nitrosyl-bridged dicopper complex [Cu2(μ-NO)(μ-OH)DPFN][NTf2]2 (4). This scission can be reversed via deprotonation of the hydroxy ligand with KOtBu. X-ray diffraction studies confirmed the solid-state molecular structures of 2 and 4. DFT calculations were used to construct a reaction coordinate diagram detailing formation of the μ-NO complex and to describe its electronic structure. The nitrosyl ligand in 4 is chemically labile, as demonstrated by its ready displacement in reactions with CO or NO2-.
Collapse
Affiliation(s)
- Jose Martinez Fernandez
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Alireza Haji Seyed Javadi
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76203, United States
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Thomas R Cundari
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76203, United States
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Chuang WJ, Narwane M, Chen HY, Kao CL, Huang B, Hsu KM, Wang YM, Hsu SCN. Nitric oxide-release study of a bio-inspired copper(i)-nitrito complex under chemical and biological conditions. Dalton Trans 2018; 47:13151-13157. [PMID: 30175363 DOI: 10.1039/c8dt02281j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The selective and efficient nitrite reduction process is ubiquitous in biological systems. To understand copper-mediated nitrite reduction, we developed a bio-inspired model system to investigate the mechanism of copper-containing nitrite reductase. A well-characterized copper(i)-nitrate complex with amino functionalized 2-(diphenylphosphino)aniline ligands, [(Ph2PC6H4(o-NH2))2Cu(ONO)], demonstrated the aniline protonation will cause NO release in an acidic environment. To further understand NO releasing ability, we also performed pH-dependency experiments and confocal imaging to release NO under physiological buffer conditions. According to titration and spectroscopic studies on the protonation reaction of complex [(Ph2PC6H4(o-NH2))2Cu(ONO)], we proposed a mechanistic pathway for proton transfer and NO release. Furthermore, DFT calculations predicted that the release of NO takes place via aniline in both organic and aqueous media. These results highlight the importance of the proton-rich microenvironment around the copper(i)-nitrite core to induce nitrate reduction in a chemical and biological environment.
Collapse
Affiliation(s)
- Wan-Jung Chuang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Manmath Narwane
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Hsing-Yin Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chai-Lin Kao
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan. and Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Bin Huang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kuang-Mei Hsu
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu 300, Taiwan.
| | - Yun-Ming Wang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan and Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu 300, Taiwan.
| | - Sodio C N Hsu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan. and Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
3
|
Cioncoloni G, Roger I, Wheatley PS, Wilson C, Morris RE, Sproules S, Symes MD. Proton-Coupled Electron Transfer Enhances the Electrocatalytic Reduction of Nitrite to NO in a Bioinspired Copper Complex. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00361] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Giacomo Cioncoloni
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Isolda Roger
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Paul S. Wheatley
- EaStCHEM School of Chemistry, University of St Andrews, Purdie Building, St Andrews KY16 9ST, United Kingdom
| | - Claire Wilson
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Russell E. Morris
- EaStCHEM School of Chemistry, University of St Andrews, Purdie Building, St Andrews KY16 9ST, United Kingdom
| | - Stephen Sproules
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Mark D. Symes
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
4
|
Luo H, Yu Y, Ma S. Suzuki coupling for preparation of allenes – ligand effects and chirality transfer. Org Chem Front 2016. [DOI: 10.1039/c6qo00489j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
o-(Diphenylphosphino)benzaldehyde has been identified as the effective ligand for the coupling of propargylic carbonates and organoboronic acids under mild conditions.
Collapse
Affiliation(s)
- Hongwen Luo
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- Department of Chemistry
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Yihua Yu
- Department of Physics
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Shengming Ma
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
5
|
Molecular structure and nitrite-bonded study on copper(II) complexes of N,N-dialkyl,N′-benzyl-ethylenediamine; synthesis, spectroscopic characterization, X-ray structure, steric effect and density functional theory calculations. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.01.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|