1
|
Iqbal MA, Fang X, Abbas Y, Weng X, He T, Zeng YJ. Unlocking high-performance near-infrared photodetection: polaron-assisted organic integer charge transfer hybrids. LIGHT, SCIENCE & APPLICATIONS 2024; 13:318. [PMID: 39648203 PMCID: PMC11625827 DOI: 10.1038/s41377-024-01695-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/17/2024] [Accepted: 11/15/2024] [Indexed: 12/10/2024]
Abstract
Room temperature femtowatt sensitivity remains a sought-after attribute, even among commercial inorganic infrared (IR) photodetectors (PDs). While organic IR PDs are poised to emerge as a pivotal sensor technology in the forthcoming Fourth-Generation Industrial Era, their performance lags behind that of their inorganic counterparts. This discrepancy primarily stems from poor external quantum efficiencies (EQE), driven by inadequate exciton dissociation (high exciton binding energy) within organic IR materials, exacerbated by pronounced non-radiative recombination at narrow bandgaps. Here, we unveil a high-performance organic Near-IR (NIR) PD via integer charge transfer between Poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (C-14PBTTT) donor (D) and Tetrafluorotetracyanoquinodimethane (TCNQF4) acceptor (A) molecules, showcasing strong low-energy subgap absorptions up to 2.5 µm. We observe that specifically, polaron excitation in these radical and neutral D-A blended molecules enables bound charges to exceed the Coulombic attraction to their counterions, leading to an elevated EQE (polaron absorption region) compared to Frenkel excitons. As a result, our devices achieve a high EQE of ∼107%, femtowatt sensitivity (NEP) of ~0.12 fW Hz-1/2 along a response time of ~81 ms, at room temperature for a wavelength of 1.0 µm. Our innovative utilization of polarons highlights their potential as alternatives to Frenkel excitons in high-performance organic IR PDs.
Collapse
Affiliation(s)
- Muhammad Ahsan Iqbal
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
- Guangdong Provincial Key Laboratory of Intelligent Disaster Prevention and Emergency Technologies for Urban Lifeline Engineering, Dongguan University of Technology, Dongguan, 523808, China
- Department of Mechanics, Tianjin University, Tianjin, 300350, China
- Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xueqian Fang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China.
- Guangdong Provincial Key Laboratory of Intelligent Disaster Prevention and Emergency Technologies for Urban Lifeline Engineering, Dongguan University of Technology, Dongguan, 523808, China.
- Department of Mechanics, Tianjin University, Tianjin, 300350, China.
| | - Yasir Abbas
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Xiaoliang Weng
- Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tingchao He
- Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yu-Jia Zeng
- Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
2
|
Alzubidi AE, Bond AM, Martin LL. Fluorine Substitution of TCNQ Alters the Redox-Driven Catalytic Pathway for the Ferricyanide-Thiosulfate Reaction. Chemphyschem 2023; 24:e202300289. [PMID: 37876345 DOI: 10.1002/cphc.202300289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/16/2023] [Indexed: 10/26/2023]
Abstract
Mechanistic variation in catalysis through substituent-based redox tuning is well established. Fluorination of TCNQ (TCNQ=tetracyanoquinodimethane) provides ~850 mV variation in the redox potentials of theTCNQF n 0 / 1 - ${{{\rm {TCNQF}}}_{{\rm {n}}}^{{\rm {0/1-}}}}$ andTCNQF n 1 - / 2 - ${{{\rm {TCNQF}}}_{{\rm {n}}}^{{\rm {1-/2-}}}}$ (n=0, 2, 4) processes. WithTCNQF 4 1 - ${{{\rm {TCNQF}}}_{{\rm {4}}}^{{\rm {1-}}}}$ , catalysis of the kinetically very slow ferrocyanide-thiosulfate redox reaction in aqueous solution occurs via a mechanism in which the catalystTCNQF 4 1 - ${{{\rm {TCNQF}}}_{{\rm {4}}}^{{\rm {1-}}}}$ is reduced toTCNQF 4 2 - ${{{\rm {TCNQF}}}_{{\rm {4}}}^{{\rm {2-}}}}$ when reacting withS 2 O 3 2 - ${{{\rm {S}}}_{{\rm {2}}}{{\rm {O}}}_{{\rm {3}}}^{{\rm {2-}}}}$ which is oxidised toS 4 O 6 2 - ${{{\rm {S}}}_{{\rm {4}}}{{\rm {O}}}_{{\rm {6}}}^{{\rm {2-}}}}$ . Subsequently,TCNQF 4 2 - ${{{\rm {TCNQF}}}_{{\rm {4}}}^{{\rm {2-}}}}$ reacts with[ Fe ( CN ) 6 ] 3 - ${{{\rm {[Fe(CN)}}}_{{\rm {6}}}{{\rm {]}}}^{{\rm {3-}}}}$ to form[ Fe ( CN ) 6 ] 4 - ${{{\rm {[Fe(CN)}}}_{{\rm {6}}}{{\rm {]}}}^{{\rm {4-}}}}$ and reform theTCNQF 4 1 - ${{{\rm {TCNQF}}}_{{\rm {4}}}^{{\rm {1-}}}}$ catalyst, in another thermodynamically favoured process. An analogous mechanism applies withTCNQF 2 1 - ${{{\rm {TCNQF}}}_{{\rm {2}}}^{{\rm {1-}}}}$ as a catalyst. In contrast, since the reaction ofS 2 O 3 2 - ${{{\rm {S}}}_{{\rm {2}}}{{\rm {O}}}_{{\rm {3}}}^{{\rm {2-}}}}$ withTCNQ 1 - ${{{\rm {TCNQ}}}^{{\rm {1-}}}}$ is thermodynamically unfavourable, an alternative mechanism is required to explain the catalytic activity observed in this non-fluorinated system. Here, upon addition ofTCNQ 1 - ${{{\rm {TCNQ}}}^{{\rm {1-}}}}$ , reduction of[ Fe ( CN ) 6 ] 3 - ${{{\rm {[Fe(CN)}}}_{{\rm {6}}}{{\rm {]}}}^{{\rm {3-}}}}$ to[ Fe ( CN ) 6 ] 4 - ${{{\rm {[Fe(CN)}}}_{{\rm {6}}}{{\rm {]}}}^{{\rm {4-}}}}$ occurs with concomitant oxidation ofTCNQ 1 - ${{{\rm {TCNQ}}}^{{\rm {1-}}}}$ toTCNQ 0 ${{{\rm {TCNQ}}}^{{\rm {0}}}}$ , which then acts as the catalyst forS 2 O 3 2 - ${{{\rm {S}}}_{{\rm {2}}}{{\rm {O}}}_{{\rm {3}}}^{{\rm {2-}}}}$ oxidation. Thermodynamic data explain the observed differences in the catalytic mechanisms.CuTCNQF n ${{{\rm {CuTCNQF}}}_{{\rm {n}}}}$ (n=0, 4) also act as catalysts for the ferricyanide-thiosulfate reaction in aqueous solution. The present study shows that homogeneous pathways are available following addition of these dissolved materials. Previously, theseCuTCNQF n ${{{\rm {CuTCNQF}}}_{{\rm {n}}}}$ (n=0, 4) coordination polymers have been regarded as insoluble in water and proposed as heterogeneous catalysts for the ferricyanide-thiosulfate reaction. Details and mechanistic differences were established using UV-visible spectrophotometry and cyclic voltammetry.
Collapse
Affiliation(s)
- Anbrah E Alzubidi
- School of Chemistry, Monash University, 3800, Clayton, Victoria, Australia
| | - Alan M Bond
- School of Chemistry, Monash University, 3800, Clayton, Victoria, Australia
| | - Lisandra L Martin
- School of Chemistry, Monash University, 3800, Clayton, Victoria, Australia
| |
Collapse
|
3
|
Yamashita Y, Tsurumi J, Ohno M, Fujimoto R, Kumagai S, Kurosawa T, Okamoto T, Takeya J, Watanabe S. Efficient molecular doping of polymeric semiconductors driven by anion exchange. Nature 2019; 572:634-638. [DOI: 10.1038/s41586-019-1504-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/20/2019] [Indexed: 12/25/2022]
|
4
|
Tran MD, Lu J, Mai BV, Vo NT, Le HT, Bond AM, Martin LL. Electrochemical and Chemical Synthesis of [ZnTCNQF
4
(DMF)
2
]
·
2DMF – A 2D Network Coordination Polymer. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Manh D. Tran
- School of Chemistry Monash University 3800 Clayton, V IC Australia
- Department of Chemistry The University of Danang University of Science and Education Danang Vietnam
| | - Jinzhen Lu
- School of Chemistry Monash University 3800 Clayton, V IC Australia
| | - Bay V. Mai
- Department of Chemistry The University of Danang University of Science and Education Danang Vietnam
| | - Nguyen T. Vo
- School of Chemistry Monash University 3800 Clayton, V IC Australia
- Department of Chemistry The University of Danang University of Science and Education Danang Vietnam
| | - Hai T. Le
- Department of Chemistry The University of Danang University of Science and Education Danang Vietnam
| | - Alan M. Bond
- School of Chemistry Monash University 3800 Clayton, V IC Australia
| | | |
Collapse
|
5
|
Gass IA, Lu J, Ojha R, Asadi M, Lupton DW, Geoghegan BL, Moubaraki B, Martin LL, Bond AM, Murray KS. [FeII(L•)2][TCNQF4•−]2: A Redox-Active Double Radical Salt. Aust J Chem 2019. [DOI: 10.1071/ch19175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The reaction of [FeII(L•)2][BF4]2 with LiTCNQF4 results in the formation of [FeII(L•)2][TCNQF4•−]2·2CH3CN (1) (L• is the neutral aminoxyl radical ligand 4,4-dimethyl-2,2-di(2-pyridyl)oxazolidine-N-oxide; TCNQF4 is 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane). Single-crystal X-ray diffraction; Raman, Fourier-transform infrared (FTIR) and ultraviolet–visible spectroscopies; and electrochemical studies are all consistent with the presence of a low-spin FeII ion, the neutral radical form (L•) of the ligand, and the radical anion TCNQF4•−. 1 is largely diamagnetic and the electrochemistry shows five well-resolved, diffusion-controlled, reversible one-electron processes.
Collapse
|
6
|
Vo NT, Martin LL, Bond AM. Electrochemistry of TCNQF2 in acetonitrile in the presence of [Cu(CH3CN)4]+: Electrocrystallisation and characterisation of CuTCNQF2. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Gass IA, Lu J, Asadi M, Lupton DW, Forsyth CM, Geoghegan BL, Moubaraki B, Cashion JD, Martin LL, Bond AM, Murray KS. Use of the TCNQF 4 2- Dianion in the Spontaneous Redox Formation of [Fe III (L - ) 2 ][TCNQF 4 ⋅- ]. Chempluschem 2018; 83:658-668. [PMID: 31950640 DOI: 10.1002/cplu.201800010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/12/2018] [Indexed: 11/08/2022]
Abstract
The reaction of [FeII (L. )2 ](BF4 )2 with Li2 TCNQF4 results in the formation of [FeIII (L- )2 ][TCNQF4 . - ] (1) where L. is the radical ligand, 4,4-dimethyl-2,2-di(2-pyridyl)oxazolidine-N-oxide and TCNQF4 is 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane. This has been characterised by X-ray diffraction, Raman and Fourier transform infrared (FTIR) spectroscopy, variable-temperature magnetic susceptibility, Mössbauer spectroscopy and electrochemistry. X-ray diffraction studies, magnetic susceptibility measurements and Raman and FTIR spectroscopy suggest the presence of low-spin FeIII ions, the anionic form (L- ) of the ligand and the anionic radical form of TCNQF4 ; viz. TCNQF4 . - . Li2 TCNQF4 reduces the [FeII (L. )2 ]2+ dication, which undergoes a reductively induced oxidation to form the [FeIII (L- )2 ]+ monocation resulting in the formation of [FeIII (L- )2 ][TCNQF4 . - ] (1), the electrochemistry of which revealed four well-separated, diffusion-controlled, one-electron, reversible processes. Mössbauer spectroscopy and electrochemical measurements suggest the presence of a minor second species, likely to be [FeII (L. )2 ][TCNQF4 2- ].
Collapse
Affiliation(s)
- Ian A Gass
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia.,School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, United Kingdom
| | - Jinzhen Lu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Mousa Asadi
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - David W Lupton
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Craig M Forsyth
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Blaise L Geoghegan
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, United Kingdom
| | | | - John D Cashion
- School of Physics and Astronomy, Monash University, Clayton, VIC, 3800, Australia
| | - Lisandra L Martin
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Alan M Bond
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Keith S Murray
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
8
|
Vo N, Haworth NL, Bond AM, Martin LL. Investigation of the Redox and Acid‐Base properties of TCNQF and TCNQF
2
: Electrochemistry, Vibrational Spectroscopy, and Substituent Effects. ChemElectroChem 2018. [DOI: 10.1002/celc.201701387] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nguyen Vo
- School of Chemistry Monash University, Clayton 3800 Victoria Australia
- Danang University of Education Danang Vietnam
| | - Naomi L. Haworth
- School of Chemistry Monash University, Clayton 3800 Victoria Australia
- School of Chemistry University of Sydney NSW 2006 Australia
| | - Alan M. Bond
- School of Chemistry Monash University, Clayton 3800 Victoria Australia
| | | |
Collapse
|
9
|
Lu J, Abrahams BF, Elliott RW, Robson R, Bond AM, Martin LL. Solvent-, Cation- and Anion-Induced Structure Variations in Manganese-Based TCNQF 4 Complexes: Synthesis, Crystal Structures, Electrochemistry and Their Catalytic Properties. Chempluschem 2018; 83:24-34. [PMID: 31957312 DOI: 10.1002/cplu.201700421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/01/2017] [Indexed: 11/12/2022]
Abstract
The reaction of Mn(BF4 )2 ⋅x H2 O with (Pr4 N)2 TCNQF4 (TCNQF4 =2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) in a mixture of CH3 OH/CH2 Cl2 gives a 2:3 stoichiometric complex of (Pr4 N)2 [Mn2 (TCNQF4 )3 (CH3 OH)2 ] (1). If the solvent system used for the crystallisation of 1 is changed to CH3 OH/DMF, then a different product, [Mn(TCNQF4 )(DMF)2 ]⋅(CH3 OH)2 (2), is obtained. The use of Li2 TCNQF4 instead of (Pr4 N)2 TCNQF4 leads to the generation of [Mn2 (TCNQF4 )2 (DMF)4 ]⋅3 DMF (3). An unexpected mixed oxidation state network with a composition of [MnII 4 MnIII 16 O10 (OH)6 (OCH3 )24 (TCNQF4 )2 ](NO3 )2 ⋅24 CH3 OH (4), is formed if Mn(NO3 )2 ⋅x H2 O is used in place of Mn(BF4 )2 ⋅x H2 O in the reaction that leads to the formation of 3. Compounds 1-3 have been characterised by X-ray crystallography; FTIR, Raman and UV/Vis spectroscopy; and electrochemistry. Compound 4 has only been analysed by X-ray crystallography and vibrational spectroscopy (Raman, FTIR), owing to rapid deterioration of the compound upon exposure to air. These results indicate that relatively minor changes in reaction conditions have the potential to yield products with vastly different structures. Compound 1 adopts an anionic 2D network with unusual π-stacked dimers of the TCNQF4 2- dianion, whereas 2 and 3 are composed of similar neutral sheets of [Mn(TCNQF4 )(DMF)2 ]. Interestingly, the solvent has a significant influence on the stacking of the sheets in the structures of 2 and 3. In compound 4, clusters with a composition of [MnII 4 MnIII 16 O10 (OH)6 (OCH3 )24 (CH3 OH)4 ]6+ serve as eight-connecting nodes, whereas TCNQF4 2- ligands act as four-connecting nodes in a 3D network that has the same topology as fluorite. Compound 3 exhibits an exceptionally high super-catalytic activity for the electron-transfer reaction between ferricyanide and thiosulfate ions in aqueous media.
Collapse
Affiliation(s)
- Jinzhen Lu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Brendan F Abrahams
- School of Chemistry, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Robert W Elliott
- School of Chemistry, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Richard Robson
- School of Chemistry, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Alan M Bond
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Lisandra L Martin
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
10
|
Rückerl F, Waas D, Büchner B, Knupfer M, Zahn DRT, Haidu F, Hahn T, Kortus J. Charge transfer from and to manganese phthalocyanine: bulk materials and interfaces. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:1601-1615. [PMID: 28884064 PMCID: PMC5550819 DOI: 10.3762/bjnano.8.160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/13/2017] [Indexed: 05/09/2023]
Abstract
Manganese phthalocyanine (MnPc) is a member of the family of transition-metal phthalocyanines, which combines interesting electronic behavior in the fields of organic and molecular electronics with local magnetic moments. MnPc is characterized by hybrid states between the Mn 3d orbitals and the π orbitals of the ligand very close to the Fermi level. This causes particular physical properties, different from those of the other phthalocyanines, such as a rather small ionization potential, a small band gap and a large electron affinity. These can be exploited to prepare particular compounds and interfaces with appropriate partners, which are characterized by a charge transfer from or to MnPc. We summarize recent spectroscopic and theoretical results that have been achieved in this regard.
Collapse
Affiliation(s)
| | - Daniel Waas
- IFW Dresden, Helmholtzstr. 20, D-01069 Dresden, Germany
| | - Bernd Büchner
- IFW Dresden, Helmholtzstr. 20, D-01069 Dresden, Germany
| | | | - Dietrich R T Zahn
- Semiconductor Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany
| | - Francisc Haidu
- Semiconductor Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany
| | - Torsten Hahn
- Institute of Theoretical Physics, TU Bergakademie Freiberg, Leipziger Str. 23, D-09596 Freiberg, Germany
| | - Jens Kortus
- Institute of Theoretical Physics, TU Bergakademie Freiberg, Leipziger Str. 23, D-09596 Freiberg, Germany
| |
Collapse
|
11
|
Lu J, Nafady A, Abrahams BF, Abdulhamid M, Winther-Jensen B, Bond AM, Martin LL. Structural, Spectroscopic, and Electrochemical Characterization of Semi-Conducting, Solvated [Pt(NH3)4](TCNQ)2·(DMF)2 and Non-Solvated [Pt(NH3)4](TCNQ)2. Aust J Chem 2017. [DOI: 10.1071/ch17245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The demand for catalysts that are highly active and stable for electron-transfer reactions has been boosted by the discovery that [Pt(NH3)4](TCNQF4)2 (TCNQF4 = 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) is an efficient catalyst. In this work, we prepare and characterize the two related [Pt(NH3)4]2+ complexes, [Pt(NH3)4](TCNQ)2·(DMF)2 (1) and [Pt(NH3)4](TCNQ)2 (2). Reaction of [Pt(NH3)4](NO3)2 with LiTCNQ in a mixed solvent (methanol/dimethylformamide, 4 : 1 v/v) gives [Pt(NH3)4](TCNQ)2·(DMF)2 (1), whereas the same reaction in water affords [Pt(NH3)4](TCNQ)2 (2). 2 has been previously reported. Both 1 and 2 have now been characterized by single-crystal X-ray crystallography, Fourier-transform (FT)IR, Raman and UV-vis spectroscopy, and electrochemistry. Structurally, in 1, the TCNQ1− anions form infinite stacks with a separation between adjacent anions within the stack alternating between 3.12 and 3.42 Å. The solvated structure 1 differs from the non-solvated form 2 in that pairs of TCNQ1− anions are clearly displaced from each other. The conductivities of pressed pellets of 1 and 2 are both in the semi-conducting range at room temperature. 2 can be electrochemically synthesized by reduction of a TCNQ-modified electrode in contact with an aqueous solution of [Pt(NH3)4](NO3)2 via a nucleation growth mechanism. Interestingly, we discovered that 1 and 2 are not catalysts for the ferricyanide and thiosulfate reaction. Li+ and tetraalkylammonium salts of TCNQ1−/2− and TCNQF41−/2− were tested for potential catalytic activity towards ferricyanide and thiosulfate. Only TCNQF41−/2− salts were active, suggesting that the dianion redox level needs to be accessible for efficient catalytic activity and explaining why 1 and 2 are not good catalysts. Importantly, the origin of the catalytic activity of the highly active [Pt(NH3)4](TCNQF4)2 catalyst is now understood, enabling other families of catalysts to be developed for important electron-transfer reactions.
Collapse
|
12
|
Lu J, Abrahams BF, Winther-Jensen B, Martin LL, Bond AM. Super-Efficient Platinum Catalyst Derived from a Semiconducting, DMF Solvate: Structural, Spectroscopic, Electrochemical, and Catalytic Characterization. ChemCatChem 2014. [DOI: 10.1002/cctc.201402134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Haworth NL, Lu J, Vo N, Le TH, Thompson CD, Bond AM, Martin LL. Diagnosis of the Redox Levels of TCNQF4Compounds Using Vibrational Spectroscopy. Chempluschem 2014. [DOI: 10.1002/cplu.201402013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Sutton AL, Abrahams BF, D'Alessandro DM, Elliott RW, Hudson TA, Robson R, Usov PM. Structural and optical investigations of charge transfer complexes involving the F4TCNQ dianion. CrystEngComm 2014. [DOI: 10.1039/c4ce00289j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|