1
|
Mandal A, Rai R, Mandal AA, Dhar P, Banerjee S. Vitamin B 6 Appended Polypyridyl Co(III) Complexes for Photo-Triggered Antibacterial Activity. Chem Asian J 2024:e202400943. [PMID: 39258323 DOI: 10.1002/asia.202400943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
Three novel polypyridyl-Co(III)-vitamin B6 complexes viz., [Co(CF3-phtpy)(SBVB6)]Cl (Co1), [Co(anthracene-tpy)(SBVB6)]Cl (Co2), [Co(NMe2-phtpy)(SBVB6)]Cl (Co3), where 4'-(4-(trifluoromethyl)phenyl)-2,2':6',2''-terpyridine=CF3-phtpy, 4'-(anthracen-9-yl)-2,2':6',2''-terpyridine=anthracene-tpy;, 4-([2,2':6',2''-terpyridin]-4'-yl)-N,N-dimethylaniline=NMe2-phtpy, (E)-5-(hydroxymethyl)-4-(((2-hydroxyphenyl)imino)methyl)-2-methylpyridin-3-ol=H2SBVB6 were successfully developed for aPDT (antibacterial photodynamic therapy) applications. Co1-Co3 exhibited an intense absorption band at ca. 435-485 nm, which is attributed to ligand-to-metal charge transfer and was beneficial for antibacterial photodynamic therapy. The distorted octahedral geometry of the complexes with CoIIIN4O2 core was evident from the DFT study. The visible light absorption ability and good photo-stability of Co1-Co3 made them good photosensitizers for aPDT. Co1-Co3 displayed significant antibacterial responses against gram-positive (S. aureus) and gram-negative (E. coli) bacteria upon light exposure (10 J cm-2 , 400-700 nm) and showed MIC values between 0.01-0.005 μg mL-1. The aPDT activities of these complexes were due to their ability to damage bacterial cell membranes via ROS generation. Overall, this study shows the photo-triggered ROS-mediated bacteria-killing potential of Co(III) complexes.
Collapse
Affiliation(s)
- Apurba Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Rohit Rai
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Prodyut Dhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
2
|
Nejadmirfathi M, Montazerozohori M, Naghiha R, Panahi Kokhdan E. New penta-Coordinated Cadmium(II) Complexes: Synthesis, Characterization, Thermal, Antimicrobial, Antioxidant and Cytotoxicity Properties. Chem Biodivers 2024; 21:e202301667. [PMID: 38502834 DOI: 10.1002/cbdv.202301667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/25/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
In this paper, a new tridentate Schiff base ligand (L) with nitrogen donor atoms and its cadmium(II) complexes with the general formula of CdLX2 (X=Cl-, Br-, I-, SCN-, N3 -, NO3 -) have been synthesized and characterized by physical and spectral (FT/IR, UV-Vis, Mass, and 1H, 13C NMR spectroscopies) methods. Also nano-structured cadmium chloride and bromide complexes were synthesized by sonochemical method and then used to prepare nanostructured cadmium oxide confirmed by XRD and SEM techniques. Thermal behavior of the compounds was studied in the temperature range of 25 to 900 °C under N2 atmosphere at a heating rate of 20 °C/ min. Moreover, thermo-kinetic activation parameters of thermal decomposition steps were calculated according to the Coats-Redfern relationship. Antimicrobial activities of the synthesized compounds against two gram-positive and two gram-negative bacteria such as Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and two fungi of Candida albicans and Aspergillus niger were investigated by well diffusion method. SEM technique was used to monitor the morphological changes of the bacteria treated with the compounds. The 2,2-Diphenyl-1-picrylhydrazyl(DPPH) and the ferric reducing antioxidant power (FRAP) methods were used to evaluate the antioxidant ability of the ligand and its cadmium(II) complexes. In final, the cytotoxicity properties of the ligand and some cadmium(II) complexes against PC3 cancer cells were evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) bioassay and nitric oxide (NO) level measurement. The morphological changes of prostate cancer (PC3) cells due to treatment with the ligand and its complexes confirmed their anticancer effectiveness.
Collapse
Affiliation(s)
- M Nejadmirfathi
- Department of Chemistry, Yasouj University, Yasouj, 7591874831, Iran
| | - M Montazerozohori
- Department of Chemistry, Yasouj University, Yasouj, 7591874831, Iran
| | - R Naghiha
- Department of Animal Sciences, Yasouj University, Yasouj, 7591874831, Iran
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - E Panahi Kokhdan
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
3
|
Mandal A, Rai R, Saha S, Kushwaha R, Wei L, Gogoi H, Mandal AA, Yadav AK, Huang H, Dutta A, Dhar P, Banerjee S. Polypyridyl-based Co(III) complexes of vitamin B 6 Schiff base for photoactivated antibacterial therapy. Dalton Trans 2023; 52:17562-17572. [PMID: 37965840 DOI: 10.1039/d3dt02967k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Herein, five novel polypyridyl-based Co(III) complexes of Schiff bases, viz., [Co(dpa)(L1)]Cl (1), [Co(dpa)(L2)]Cl (2), [Co(L3)(L2)]Cl (3), [Co(L3)(L1)]Cl (4), and [Co(L4)(L1)]Cl (5), where dpa (dipicolylamine) = bis(2-pyridylmethyl)amine; H2L1 = (E)-2-((2-hydroxybenzylidene)amino)phenol; H2L2 = (E)-5-(hydroxymethyl)-4-(((2-hydroxyphenyl)imino)methyl)-2-methylpyridin-3-ol; L3 = 4'-phenyl-2,2':6',2''-terpyridine (ph-tpy); and L4 = 4'-ferrocenyl-2,2':6',2''-terpyridine (Fc-tpy), were synthesized and characterized. Complexes 1, 3, and 4 were structurally characterized by single-crystal XRD, indicating an octahedral CoIIIN4O2 coordination core. The absorption bands of these complexes were observed in the visible range with a λmax at ∼430-485 nm. Complex 5 displayed an extra absorption band near 545 nm because of a ferrocene moiety. These absorptions in the visible region reflect the potential of the complexes to act as visible-light antimicrobial photodynamic therapy (aPDT) agents. All of these complexes showed reactive oxygen species (ROS)-mediated antibacterial effects against S. aureus (Gram-positive) and E. coli (Gram-negative bacteria) upon low-energy visible light (0.5 J cm-2, 400-700 nm) exposure. Additionally, 1-5 did not show any toxicity toward A549 (Human Lung adenocarcinoma) cells, reflecting their selective bacteria-killing abilities.
Collapse
Affiliation(s)
- Apurba Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Rohit Rai
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Varanasi, Uttar Pradesh, India 221005.
| | - Sukanta Saha
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Li Wei
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Hemonta Gogoi
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Huayi Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Prodyut Dhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Varanasi, Uttar Pradesh, India 221005.
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
4
|
Gaikwad KD, Ubale P, Khobragade R, Deodware S, Dhale P, Asabe MR, Ovhal RM, Singh P, Vishwanath P, Shivamallu C, Achar RR, Silina E, Stupin V, Manturova N, Shati AA, Alfaifi MY, Elbehairi SEI, Gaikwad SH, Kollur SP. Preparation, Characterization and In Vitro Biological Activities of New Diphenylsulphone Derived Schiff Base Ligands and Their Co(II) Complexes. Molecules 2022; 27:8576. [PMID: 36500665 PMCID: PMC9741402 DOI: 10.3390/molecules27238576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
The present work describes the chemical preparation of Schiff bases derived from 4,4'-diaminodiphenyl sulfone (L1-L5) and their Co(II) metal complexes. The evaluation of antimicrobial and anticancer activities against MCF-7 cell line and human lung cancer cell line A-549 was performed. The aforementioned synthesized compounds are characterized by spectroscopic techniques and elemental analysis confirms successful synthesis. The results from the above analytical techniques revealed that the complexes are in an octahedral geometry. The antimicrobial activity of the synthesized Schiff base ligands and their metal complexes under study was carried out by using the agar well diffusion method. The ligand and complex interactions for biological targets were predicted using molecular docking and high binding affinities. Further, the anticancer properties of the synthesized compounds are performed against the MCF-7 cell line and human lung cancer cell line A-549 using adriamycin as the standard drug.
Collapse
Affiliation(s)
- Kundalkesha D. Gaikwad
- Department of Chemistry, Sangameshawar College, Solapur 413 001, India
- Chemistry Research Laboratory, Department of Chemistry, Shri Shivaji Mahavidyalaya, Solapur 413 411, India
| | - Panchsheela Ubale
- Department of Chemistry, N. K. Orchid College of Engineering and Technology, Solapur 413 002, India
| | - Rahul Khobragade
- Department of Microbiology, Dr. Babasaheb Ambedkar Marathwada University, Sub Campus, Osmanabad 413 501, India
| | - Sachin Deodware
- Chemistry Research Laboratory, Department of Chemistry, Shri Shivaji Mahavidyalaya, Solapur 413 411, India
| | - Pratibha Dhale
- Chemistry Research Laboratory, Department of Chemistry, Shri Shivaji Mahavidyalaya, Solapur 413 411, India
| | - Mahadev R. Asabe
- Department of Chemistry, Walchand College of Art and Science, Solapur 413 006, India
| | - Rekha M. Ovhal
- Department of Chemistry, Walchand College of Art and Science, Solapur 413 006, India
| | - Pranav Singh
- Department of Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Udupi 576 104, India
| | - Prashant Vishwanath
- Centre for Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570 015, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570 015, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570 015, India
| | - Ekaterina Silina
- Department of Hospital Surgery, N.I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Victor Stupin
- Department of Hospital Surgery, N.I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Natalia Manturova
- Department of Hospital Surgery, N.I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Serag Eldin I. Elbehairi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
- Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Giza 22311, Egypt
| | - Shashikant H. Gaikwad
- Chemistry Research Laboratory, Department of Chemistry, Shri Shivaji Mahavidyalaya, Solapur 413 411, India
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru 570 026, India
| |
Collapse
|
5
|
New Co and Mn Catalysts Bearing ONO Ligands Containing Nucleophile for the Coupling of CO2 and Propylene Oxide. Catalysts 2022. [DOI: 10.3390/catal12111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A series of novel ONO ligands bearing an ionic pendant-armed (hereinafter indicated as ONONu, where Nu corresponds to an anionic nucleophile) were synthesized, characterized, and successfully coordinated to cobalt and manganese precursors. New air-stable cobalt (III) complexes (1–6) and manganese (II) complexes (7 and 8) were obtained and characterized. Single crystal X-ray diffraction analysis of the Co(III) compound 5 confirmed the presence of two quaternized ligands coordinated to the metal and iodide as counterion. These novel complexes were revealed to be active catalysts in the coupling reaction of carbon dioxide and propylene oxide (PO) in different degrees of success. Among these, the manganese complex 8 afforded the best results towards the formation of propylene carbonate (PC) with a productivity of 256 kg PC/(kg cat·h), achieving a TON of 4860.
Collapse
|
6
|
Alfonso‐Herrera LA, Rosete‐Luna S, Hernández‐Romero D, Rivera‐Villanueva JM, Olivares‐Romero JL, Cruz‐Navarro JA, Soto‐Contreras A, Arenaza‐Corona A, Morales‐Morales D, Colorado‐Peralta R. Transition Metal Complexes with Tridentate Schiff Bases (O N O and O N N) Derived from Salicylaldehyde: An Analysis of Their Potential Anticancer Activity. ChemMedChem 2022; 17:e202200367. [PMID: 36068174 PMCID: PMC9826236 DOI: 10.1002/cmdc.202200367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/05/2022] [Indexed: 01/11/2023]
Abstract
Although it is known that the first case of cancer was recorded in ancient Egypt around 1600 BC, it was not until 1917 during the First World War and the development of mustard gas that chemotherapy against cancer became relevant; however, its properties were not recognised until 1946 to later be used in patients. In this sense, the use of metallopharmaceuticals in cancer therapy was extensively explored until the 1960s with the discovery of cisplatin and its anticancer activity. From that date to the present, the search for more effective, more selective metallodrugs with fewer side effects has been an area of continuous exploration. Efforts have led to considering a wide variety of metals from the periodic table, mainly from the d-block, as well as a wide variety of organic ligands, preferably with proven biological activity. In this sense, various research groups have found an ideal binder in Schiff bases, since their raw materials are easily accessible, their synthesis conditions are friendly and their denticity can be manipulated. Therefore, in this review, we have explored the anticancer and antitumor activity reported in the literature for coordination complexes of d-block metals coordinated with tridentate Schiff bases (O N O and O N N) derived from salicylaldehyde. For this work, we have used the main scientific databases CCDC® and SciFinder®.
Collapse
Affiliation(s)
- Luis A. Alfonso‐Herrera
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
- Universidad Autónoma de Nuevo León Facultad de Ingeniería Civil Departamento de Ecomateriales y Energía Av. Universidad S/N Ciudad Universitaria64455San Nicolás de los GarzaNuevo LeónMéxico
| | - Sharon Rosete‐Luna
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
| | - Delia Hernández‐Romero
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
| | - José M. Rivera‐Villanueva
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
| | - José L. Olivares‐Romero
- Instituto de Ecología A.C. Red de Estudios Moleculares AvanzadosClúster Científico y Tecnológico BioMimic® Carretera Antigua a Coatepec, No. 35191070Xalapa, VeracruzMéxico
| | - J. Antonio Cruz‐Navarro
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
- Universidad Autónoma del Estado de HidalgoÁrea Académica de Química Km 4.5 Carretera Pachuca-Tulancingo42184, Mineral de la ReformaHidalgoMéxico
| | - Anell Soto‐Contreras
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
- Universidad VeracruzanaFacultad de Ciencias Biológicas y Agropecuarias Km 177 Camino Peñuela-Amatlán S/N94500, Peñuela, Amatlán de los ReyesVeracruzMéxico
| | - Antonino Arenaza‐Corona
- Universidad Nacional Autónoma de México Instituto de Química, Circuito Exterior S/N04510Ciudad de MéxicoMéxico
| | - David Morales‐Morales
- Universidad Nacional Autónoma de México Instituto de Química, Circuito Exterior S/N04510Ciudad de MéxicoMéxico
| | - Raúl Colorado‐Peralta
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
| |
Collapse
|
7
|
Loizou M, Papaphilippou P, Vlasiou M, Spilia M, Peschos D, Simos YV, Keramidas AD, Drouza C. Binuclear VIV/V, MoVI and ZnII - hydroquinonate complexes: Synthesis, stability, oxidative activity and anticancer properties. J Inorg Biochem 2022; 235:111911. [DOI: 10.1016/j.jinorgbio.2022.111911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
|
8
|
Kar K, Ghosh D, Kabi B, Chandra A. A concise review on cobalt Schiff base complexes as anticancer agents. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Jana A, Aher A, Brandao P, Bera P, Sharda S, Phadikar U, Manna SK, Mahapatra AK, Bera P. Evaluation of the anticancer activities with various ligand substituents in Co(II/III)-picolyl phenolate derivatives: synthesis, characterization, DFT, DNA cleavage, and molecular docking studies. Dalton Trans 2022; 51:2346-2363. [PMID: 35043134 DOI: 10.1039/d1dt02825a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The reactions between 2-(pyridine-2-ylmethoxy)-benzaldehyde (L) and various primary amines furnish tridentate (L1 to L3) and tetradentate (L4) chelating ligands. The choice of different primary amines in the condensation reaction incorporates the chiral carbon atom in L2 and L3. A series of mononuclear cobalt(II) complexes, [CoII(L1)(Cl)2] (1), [CoII(L2)(Cl)2]·CH3CN (2), [CoII(L3)(Cl)2] (3), and [CoIII(L4)(N3)2] (4) are synthesized in the pure crystalline state from the resulting solution of cobalt(II) chloride and/or azide and respective ligand. The new ligands and cobalt complexes are characterized using spectral (UV-Vis, 1H-NMR, IR, and HRMS), cyclovoltammetric, and DFT studies. The structure of L1, L2, and all four cobalt complexes are determined by single X-ray crystallography. Cytotoxic activity of the compounds is evaluated using three different tissues of origin e.g., U-937 (histiocytic lymphoma), HEK293T (embryonic kidney), and A549 (lung carcinoma). The cobalt complexes are more active than the corresponding ligands against U-937 and HEK293T. The MTT assay demonstrates that the cobalt compounds are more effective anticancer agents against U-937 cancer cells than HEK293T and A549. The toxicity order, 1 (7.2 ± 0.3 μM) > 3 (11.4 ± 0.6 μM) > 2 (12 ± 0.1 μM) > 4 (29 ± 1 μM) is observed against U-937 cancer cells. All the compounds induce cell death through an apoptosis mechanism and all are ineffective against PBMCs. The mechanism of activity against U937 cancer cells involves caspase-3 activation and two different mitogen-activated protein kinases attesting the programmed cell death. Among the compounds, complexes 1, 2, and 3 show DNA cleavage activity both in oxidizing (H2O2) and reducing (GSH) environments. The mechanistic study reveals that singlet oxygen (1O2) is the major species involved in DNA cleavage. The absolute chemical hardness values of the ligands and 4 are relatively higher than 1, 2, and 3, which tacitly support the DNA cleavage experiment. The docking result indicates that the compounds under investigation strongly interact with DNA base pairs through a variety of interactions which attests successfully to the experimental results. A structure-activity relationship has been drawn to correlate the variation of antitumor activity with ligand conformations.
Collapse
Affiliation(s)
- Abhimanyu Jana
- Post Graduate Department of Chemistry, Panskura Banamali College (Autonomous) (Vidyasagar University), Panskura R. S, Midnapore (East), West Bengal, 721152, India.
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, 711103, India
| | - Abhishek Aher
- Centre for DNA Fingerprinting & Diagnostics (CDFD), Hyderabad, 500 039, Telangana, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana-121001, India
| | - Paula Brandao
- Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pradip Bera
- Post Graduate Department of Chemistry, Panskura Banamali College (Autonomous) (Vidyasagar University), Panskura R. S, Midnapore (East), West Bengal, 721152, India.
- Department of Chemistry, Kandi Raj College, Murshidabad, West Bengal, 742137, India
| | - Saphy Sharda
- Centre for DNA Fingerprinting & Diagnostics (CDFD), Hyderabad, 500 039, Telangana, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana-121001, India
| | - Ujjwal Phadikar
- Post Graduate Department of Chemistry, Panskura Banamali College (Autonomous) (Vidyasagar University), Panskura R. S, Midnapore (East), West Bengal, 721152, India.
| | - Sunil Kumar Manna
- Centre for DNA Fingerprinting & Diagnostics (CDFD), Hyderabad, 500 039, Telangana, India
- Adjunct Faculty, Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, 711103, India
| | - Pulakesh Bera
- Post Graduate Department of Chemistry, Panskura Banamali College (Autonomous) (Vidyasagar University), Panskura R. S, Midnapore (East), West Bengal, 721152, India.
| |
Collapse
|
10
|
Gaikwad KD, Khobragade RM, Deodware SA, Ubale PA, Dhale PC, Ovhal RM, Shivamallu C, Ankegowda VM, Raghavendra H, Gaikwad SH, Kollur SP. Chemical synthesis, spectral characterization and biological activities of new diphenylsulphone derived Schiff base ligand and their Ni(II) complexes. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
11
|
Guk DA, Krasnovskaya OO, Beloglazkina EK. Coordination compounds of biogenic metals as cytotoxic agents in cancer therapy. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
The review summarizes the data on the structures and methods for the synthesis of compounds with anticancer activity based on biogenic metals, which can replace platinum drugs prevailing in cytotoxic therapy. The main focus is given to the comparison of the mechanisms of the cytotoxic action of these complexes, their efficacy and prospects of their use in clinical practice. This is the first systematic review of cytotoxic zinc, iron, cobalt and copper compounds. The structure – activity relationships and the mechanisms of antitumour action are formulated for each type of metal complexes.
The bibliography includes 181 references.
Collapse
|
12
|
Synthesis and structural characterization of new benzylidene glycosides, cytotoxicity against cancer cell lines and molecular modeling studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Liao WH, Song XQ, Kong YJ, Bao RD, Li FF, Zhou J, Zhao QH, Xu JY, Xie N, Xie MJ. A novel Schiff base cobalt(III) complex induces a synergistic effect on cervical cancer cells by arresting early apoptosis stage. Biometals 2021; 34:277-289. [PMID: 33389333 DOI: 10.1007/s10534-020-00278-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
A new schiff base cobalt(III) complex [N,N'-bis(2'-hydroxyphenylacetone)-o-ethanediamine] cobalt(III) (M3) has been synthesized and characterized by single X-ray crystallography. The cytotoxicity of complex M3 was evaluated against HeLa, LoVo, A549, A549/cis cancer cell lines, and the normal cell lines LO2 by MTT assays. The IC50 is in the range of 6.27-22.68 μM, which is somewhat lower than cisplatin on the basis of platinum molar concentration. Furthermore, anticancer mechanistic studies showed that the complex M3 inhibited cell proliferation by blocking DNA synthesis and then acted on nuclear division of HeLa cells over time. Moreover, western blot analysis indicated M3 dramatically decreased the target protein c-Myc and KLF5 expression levels, and activated many signaling pathways including ER stress, apoptosis, cell cycle and DNA damage in HeLa. M3 did not affect proteasomal activity.
Collapse
Affiliation(s)
- Wen-Hui Liao
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Xue-Qing Song
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yan-Jie Kong
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, China
| | - Rui-Dan Bao
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Fang-Fang Li
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Jie Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Qi-Hua Zhao
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Jing-Yuan Xu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Ni Xie
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, China.
| | - Ming-Jin Xie
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China.
| |
Collapse
|
14
|
Ibrahim AB, Mahmoud GA, Meurer F, Bodensteiner M. Preparation and crystallographic studies of a new mercuric salicylaldimine complex for fabrication of microscaled and nanoscaled mercuric sulfide as antimicrobial agents against human pathogenic yeasts and filamentous fungi. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ahmed B.M. Ibrahim
- Department of Chemistry, Faculty of Science Assiut University Assiut 71516 Egypt
| | | | - Florian Meurer
- Faculty of Chemistry and Pharmacy University of Regensburg Regensburg Germany
| | | |
Collapse
|
15
|
Soliman SM, Haukka M, Al-Rasheed HH, El-Faham A. Molecular and supramolecular structures of self-assembled Cu(II) and Co(II) complexes with 4,4’-[6-(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazine-2,4-diyl]dimorpholine ligand. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Ghosh P, Das J, Basak A, Kanti Mukhopadhyay S, Banerjee P. Intracellular Fluorometric Recognition of Explosive and Mutagenic Nitroaromatics by a Luminescent Phenanthrene‐Naphthalene Sulfone. ChemistrySelect 2020. [DOI: 10.1002/slct.202001295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Pritam Ghosh
- Surface Engineering & Tribology GroupCSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue, City Center Durgapur 713209, West Bengal India
| | - Joyee Das
- Organic Chemistry DivisionIndian Institute of Technology Kharagpur Kharagpur 721302 West Bengal
| | - Amit Basak
- Organic Chemistry DivisionIndian Institute of Technology Kharagpur Kharagpur 721302 West Bengal
| | | | - Priyabrata Banerjee
- Surface Engineering & Tribology GroupCSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue, City Center Durgapur 713209, West Bengal India
- Academy of Scientific and Innovative Research (AcSIR)AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| |
Collapse
|
17
|
Liu Y, Shi WJ, Lu YK, Liu G, Hou L, Wang YY. Nonenzymatic Glucose Sensing and Magnetic Property Based On the Composite Formed by Encapsulating Ag Nanoparticles in Cluster-Based Co-MOF. Inorg Chem 2019; 58:16743-16751. [PMID: 31794201 DOI: 10.1021/acs.inorgchem.9b02889] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Utilizing the oxygen-bridged 5,5'-oxidiisophthalic acid (H4L) linker, one Co(II)-based 3D porous MOF {[Co5(L)2(OH)2(OH2)2(H2O)4]·2DMF·H2O}n (1) with pentanuclear [Co5(μ3-OH)2(μ2-OH2)2]8+ cluster was prepared. The glassy carbon electrode was modified by 1, and the obtained electrode revealed electrocatalytic performance for glucose oxidation. The porous MOF matrix is beneficial for dispersing Ag nanoparticles evenly in the interior cages or channels, so Ag@1 composite composed of both Ag nanoparticles and MOF was further prepared through deposition-reduction method to enhance electrocatalytic activity. The result demonstrates that the glucose oxidation by Ag@1 was greatly increased with low detection limit (1.32 μM) and good selectivity and sensitivity (0.135 μA μM-1), which promote the application of MOF-template porous composites as advanced electrochemical sensor materials. Furthermore, 1 shows an interesting magnetic spin-glass slow dynamics for the existing of peculiar pentanuclear Co(II) clusters.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science , Northwest University , Xi'an 710069 , PR China.,Shaanxi Institute of International Trade& Commerce , Xi'an 712046 , PR China
| | - Wen-Juan Shi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science , Northwest University , Xi'an 710069 , PR China
| | - Yu-Ke Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science , Northwest University , Xi'an 710069 , PR China
| | - Ge Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science , Northwest University , Xi'an 710069 , PR China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science , Northwest University , Xi'an 710069 , PR China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science , Northwest University , Xi'an 710069 , PR China
| |
Collapse
|
18
|
Exploring the DNA binding efficacy of Cobalt(II) and Copper(II) complexes of hydroxamic acids and explicating their anti-cancer propensity. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
A dual approach to study the key features of nickel (II) and copper (II) coordination complexes: Synthesis, crystal structure, optical and nonlinear properties. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.09.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Ramezani S, Pordel M, Davoodnia A. Synthesis, characterization and quantum-chemical investigations of new fluorescent heterocyclic Schiff-base ligands and their cobalt(II) complexes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.09.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Zhou L, Xie G, Chen X. RETRACTED: Carbonization-dependent nitrogen-doped hollow porous carbon nanospheres synthesis and electrochemical study for supercapacitors. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2018.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Halide salts and their structural properties in presence of secondary amine based molecule: A combined experimental and theoretical analysis. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Paul S, Ghosh P, Bhuyan S, Mukhopadhyay SK, Banerjee P. Nanomolar-level selective dual channel sensing of Cu2+and CN−from an aqueous medium by an opto-electronic chemoreceptor. Dalton Trans 2018; 47:1082-1091. [DOI: 10.1039/c7dt03802j] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel chromogenic and fluorogenic chemoreceptor exhibiting a proclivity towards Cu2+and CN−, with applications in bioimaging and molecular electronics, was developed.
Collapse
Affiliation(s)
- Suparna Paul
- Surface Engineering & Tribology Group
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur 713209
- India
- Academy of Scientific and Innovative Research
| | - Pritam Ghosh
- Surface Engineering & Tribology Group
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur 713209
- India
| | - Samuzal Bhuyan
- Department of Chemistry
- Sikkim University
- Gangtok-737102
- India
| | | | - Priyabrata Banerjee
- Surface Engineering & Tribology Group
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur 713209
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
24
|
Kharabayev NN. Quantum chemical modeling of the mechanism of formation of bis-ligand Co(II) complexes based on polydentate heterocyclic azomethine derivatives: Competition between four-, five-, and six-coordination. RUSS J COORD CHEM+ 2017. [DOI: 10.1134/s107032841712003x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Yousef Ebrahimipour S, Machura B, Mohamadi M, Khaleghi M. A novel cationic cobalt(III) Schiff base complex: Preparation, crystal structure, Hirshfeld surface analysis, antimicrobial activities and molecular docking. Microb Pathog 2017; 113:160-167. [DOI: 10.1016/j.micpath.2017.10.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/13/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022]
|
26
|
Crystal structure, DNA interaction and thermal analysis data of two new antimicrobial active binuclear cadmium and mercury complexes. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.05.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Beheshti A, Hashemi F, Behavndi F, Zahedi M, Kolahi M, Motamedi H, Mayer P. Synthesis, structural characterization, QSAR and docking studies of a new binuclear nickel (II) complex based on the flexible tetradentate N-donor ligand as a potent antibacterial and anticancer agent. Int J Biol Macromol 2017; 104:1107-1123. [PMID: 28663150 DOI: 10.1016/j.ijbiomac.2017.06.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 10/19/2022]
Abstract
A new nickel (II)complex namely [Ni2(Lt)Cl4] derived from the NiCl2.6H2O and 1,1,3,3-tetrakis(3,5-dimethyl-1-pyrazolyl)propane (Lt) has been synthesized and fully characterized by the single crystal X-ray diffraction, elemental analysis, FT-IR, UV-vis, density functional theory (DFT) calculations, antibacterial and anticancer activities. In the title complex, each of the Ni(II) atoms is tetrahedrally coordinated by two N atoms from one of the chelating bidentate bis(3,5-dimethylpyrazolyl)methane units of the Lt ligand and two Cl as terminal ligands. The neighboring [Ni2(Lt)Cl4] molecules are linked together by the intermolecular CH⋯Cl hydrogen bonds to generate a 1D chain structure. The chains are further stabilized by the intermolecular CH⋯π interactions to form a two-dimensional non-covalent bonded structure. The antibacterial activity of the free Lt ligand and its Ni (II) complex shows that the ability of these compounds to inhibit growth of the tested bacteria increase from the Lt to binuclear nickel (II) complex. Scanning probe microscopy (SPM) study of the treated B. subtilis and E. coli bacteria was implemented to understand the structural changes caused by the interactions between the nickel (II) complex and the target bacteria. The cytotoxicity test of the Lt ligand and its complex was evaluated against the human carcinoma cell line (Caco-2) using the MTT assay. The results indicate that the Lt ligand and its complex display cytotoxicity against Caco-2 with the IC50 values of 36.29μM and 12.97μM, respectively. Therefore, the complex can be nominated as a potential anticancer agent. Molecular docking investigations on the five standard antibiotic, five standard anticancer drugs, free Lt ligand, title complex and twelve receptors were performed by Autodock vina function. The results of docking and DFT calculations are in line with the in vitro data obtained via the antibacterial and anticancer activity of Lt ligand and its made-complex.
Collapse
Affiliation(s)
- Azizolla Beheshti
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Faezeh Hashemi
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Fatemeh Behavndi
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mansour Zahedi
- Department of Chemistry, Faculty of Chemistry, Shahid Beheshti University, G. C. Tehran, 19839, Evin, P.O. Box 19395-4716, Iran
| | - Maryam Kolahi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hossein Motamedi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Biotechnology and Biological Science Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Peter Mayer
- Department Chemie Butenandtstr, LMU München University, München, Germany
| |
Collapse
|
28
|
|
29
|
Shabbir M, Akhter Z, Ashraf AR, Bolte M, Wahid S, Mirza B. Pharmacological evaluation of ONNO donor quadridentate Schiff bases. ACTA ACUST UNITED AC 2017. [DOI: 10.5155/eurjchem.8.1.46-51.1535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Ghosh P, Banerjee P. Small molecular probe as selective tritopic sensor of Al 3+, F - and TNP: Fabrication of portable prototype for onsite detection of explosive TNP. Anal Chim Acta 2017; 965:111-122. [PMID: 28366208 DOI: 10.1016/j.aca.2017.02.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/29/2017] [Accepted: 02/13/2017] [Indexed: 12/17/2022]
Abstract
Schiff base organic compound (SOC) has been prepared as a tritopic chemosensor for selective sensing by fluorescence signalling towards ions like Al3+, F- and explosive molecule like TNP. In general, fluorescence like photophysical property has been used for selective detection of analyte where Al3+ and F- show turn-on fluorescence signal at different wavelengths (nm) however, quenching was found with TNP. As a consequence, the chemosensor has become a selective sensor for Al3+, F- and TNP. Reversibility of fluorescence responses for Al3+ and F- are observed in presence of ammonium nitrate and H+ respectively. Similar to the detection of TNP, the detection of explosive like NO3- salts is also essential from homeland security point of view. In the present work, the finding of reversible sequential fluorescence response can be promoted for fabrication of next generation AND-NOT-OR-NAND-XOR-XNOR-NOR based complex logic circuit which is applicable in photonics, security and other fields including inorganic and material science. In the case of TNP recognition, the pathway mainly depends on non-covalent interaction (quenching constant: 4.4 × 105 M-1) which is even better than the recently reported materials. Detection limit for Al3+, F- and TNP is 1 μM, 3 μM and 500 nM respectively. DFT-D3 has been carried out to explore the host⋯guest interaction along with the structure-property correlation of the present host-guest system. All three guest analytes have been detected inside the living cell at a certain level and in its consequence, the successful in vitro recognition ability of the SOCs inside human cell line HeLa has been explored too. In real time stepping, an easy to operate and an economically affordable pocket prototype has also been fabricated for on spot detection of TNP like explosive.
Collapse
Affiliation(s)
- Pritam Ghosh
- Surface Engineering and Tribology Division, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, District: Burdwan, West Bengal, India
| | - Priyabrata Banerjee
- Surface Engineering and Tribology Division, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, District: Burdwan, West Bengal, India.
| |
Collapse
|
31
|
Roy Chowdhury A, Mondal A, Roy BG, K JCB, Mukhopadhyay S, Banerjee P. Hydrazine functionalized probes for chromogenic and fluorescent ratiometric sensing of pH and F−: experimental and DFT studies. Photochem Photobiol Sci 2017; 16:1654-1663. [DOI: 10.1039/c7pp00246g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two novel hydrazine based sensors, BPPIH (N1,N3-bis(perfluorophenyl)isophthalohydrazide) and BPBIH (N1′,N3′-bis(perfluorobenzylidene)isophthalohydrazide), are presented here.
Collapse
Affiliation(s)
- Additi Roy Chowdhury
- Surface Engineering & Tribology Group
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur 713209
- India
- Academy of Scientific and Innovative Research
| | - Amita Mondal
- Surface Engineering & Tribology Group
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur 713209
- India
- Department of Chemistry
| | | | | | - Sudit Mukhopadhyay
- Department of Biotechnology
- National Institute of Technology
- Durgapur
- India
| | - Priyabrata Banerjee
- Surface Engineering & Tribology Group
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur 713209
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
32
|
Prosser KE, Walsby CJ. Electron Paramagnetic Resonance as a Tool for Studying the Mechanisms of Paramagnetic Anticancer Metallodrugs. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201601142] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kathleen E. Prosser
- Department of Chemistry; Simon Fraser University; 8888 University Dr. V5A 1S6 Burnaby BC Canada
| | - Charles J. Walsby
- Department of Chemistry; Simon Fraser University; 8888 University Dr. V5A 1S6 Burnaby BC Canada
| |
Collapse
|
33
|
Synthesis, structural characterization, antibacterial activity and computational studies of new cobalt (II) complexes with 1,1,3,3-tetrakis (3,5-dimethyl-1-pyrazolyl)propane ligand. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.06.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Ghosh P, Banerjee P. Chromogenic and fluorogenic Schiff base chemosensor for nano scale level fluoride detection with logical interpretation. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.04.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Quintero-Téllez MG, Alcántara-Flores JL, Bernès S, Arroyo Carrasco ML, Méndez Otero MM, Reyes-Ortega Y. Synthesis, spectroscopic and structural characterization of bis[ N , N ′-3-azapentane-1,5-diyl-bis(salicylideneiminato)]-dicobalt(III). INORG CHEM COMMUN 2016. [DOI: 10.1016/j.inoche.2016.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Synthesis, characterization, biological and electrochemical evaluation of novel ether based ON donor bidentate Schiff bases. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Saha SK, Dutta A, Ghosh P, Sukul D, Banerjee P. Novel Schiff-base molecules as efficient corrosion inhibitors for mild steel surface in 1 M HCl medium: experimental and theoretical approach. Phys Chem Chem Phys 2016; 18:17898-911. [PMID: 27315235 DOI: 10.1039/c6cp01993e] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In order to evaluate the effect of the functional group present in the ligand backbone towards corrosion inhibition performances, three Schiff-base molecules namely, (E)-4-((2-(2,4-dinitrophenyl)hydrazono)methyl)pyridine (L(1)), (E)-4-(2-(pyridin-4-ylmethylene)hydrazinyl)benzonitrile (L(2)) and (E)-4-((2-(2,4-dinitrophenyl)hydrazono)methyl)phenol (L(3)) were synthesized and used as corrosion inhibitors on mild steel in 1 M HCl medium. The corrosion inhibition effectiveness of the studied inhibitors was investigated by weight loss and several sophisticated analytical tools such as potentiodynamic polarization and electrochemical impedance spectroscopy measurements. Experimentally obtained results revealed that corrosion inhibition efficiencies followed the sequence: L(3) > L(1) > L(2). Electrochemical findings showed that inhibitors impart high resistance towards charge transfer across the metal-electrolyte interface and behaved as mixed type inhibitors. Scanning electron microscopy (SEM) was also employed to examine the protective film formed on the mild steel surface. The adsorption as well as inhibition ability of the inhibitor molecules on the mild steel surface was investigated by quantum chemical calculation and molecular dynamic (MD) simulation. In quantum chemical calculations, geometry optimized structures of the Schiff-base inhibitors, electron density distribution in HOMO and LUMO and Fukui indices of each atom were employed for their possible mode of interaction with the mild steel surfaces. MD simulations revealed that all the inhibitors molecules adsorbed in parallel orientation with respect to the Fe(110) surface.
Collapse
Affiliation(s)
- Sourav Kr Saha
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India.
| | | | | | | | | |
Collapse
|
38
|
Munteanu CR, Suntharalingam K. Advances in cobalt complexes as anticancer agents. Dalton Trans 2016; 44:13796-808. [PMID: 26148776 DOI: 10.1039/c5dt02101d] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The evolution of resistance to traditional platinum-based anticancer drugs has compelled researchers to investigate the cytostatic properties of alternative transition metal-based compounds. The anticancer potential of cobalt complexes has been extensively studied over the last three decades, and much time has been devoted to understanding their mechanisms of action. This perspective catalogues the development of antiproliferative cobalt complexes, and provides an in depth analysis of their mode of action. Early studies on simple cobalt coordination complexes, Schiff base complexes, and cobalt-carbonyl clusters will be documented. The physiologically relevant redox properties of cobalt will be highlighted and the role this plays in the preparation of hypoxia selective prodrugs and imaging agents will be discussed. The use of cobalt-containing cobalamin as a cancer specific delivery agent for cytotoxins will also be described. The work summarised in this perspective shows that the biochemical and biophysical properties of cobalt-containing compounds can be fine-tuned to produce new generations of anticancer agents with clinically relevant efficacies.
Collapse
|
39
|
Saha SK, Hens A, Murmu NC, Banerjee P. A comparative density functional theory and molecular dynamics simulation studies of the corrosion inhibitory action of two novel N-heterocyclic organic compounds along with a few others over steel surface. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.01.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Ghosh P, Banerjee P. How paramagnetic and diamagnetic LMOCs detect picric acid from surface water and the intracellular environment: a combined experimental and DFT-D3 study. Phys Chem Chem Phys 2016; 18:22805-15. [DOI: 10.1039/c6cp01620k] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diamagnetic and paramagnetic luminescent metal organic complexes (LMOCs) have been reported for explosive and pollutant nitro aromatic (epNAC) recognition.
Collapse
Affiliation(s)
- Pritam Ghosh
- Surface Engineering & Tribology Group
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur 713209
- India
| | - Priyabrata Banerjee
- Surface Engineering & Tribology Group
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur 713209
- India
- Academy of Scientific & Innovative Research (AcSIR) at CSIR-CMERI
| |
Collapse
|
41
|
Ghosh P, Saha SK, Roychowdhury A, Banerjee P. Recognition of an Explosive and Mutagenic Water Pollutant, 2,4,6-Trinitrophenol, by Cost-Effective Luminescent MOFs. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500233] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Chowdhury AR, Ghosh P, Roy BG, Mukhopadhyay SK, Mitra P, Banerjee P. A simple and dual responsive efficient new Schiff base chemoreceptor for selective sensing of F− and Hg2+: application to bioimaging in living cells and mimicking of molecular logic gates. RSC Adv 2015. [DOI: 10.1039/c5ra06105a] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel colorimetric hydrazine-functionalized Schiff base chemoreceptor, NPMP, was synthesized following a simple one-step Schiff base condensation pathway.
Collapse
Affiliation(s)
- Additi Roy Chowdhury
- Surface Engineering & Tribology Group
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur-713209
- India
- Academy of Scientific and Innovative Research at CSIR-CMERI
| | - Pritam Ghosh
- Surface Engineering & Tribology Group
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur-713209
- India
| | | | | | - Partha Mitra
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Priyabrata Banerjee
- Surface Engineering & Tribology Group
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur-713209
- India
- Academy of Scientific and Innovative Research at CSIR-CMERI
| |
Collapse
|
43
|
Ghosh P, Roy BG, Jana S, Mukhopadhyay SK, Banerjee P. Colorimetric and fluorimetric response of Schiff base molecules towards fluoride anion, solution test kit fabrication, logical interpretations and DFT-D3 study. Phys Chem Chem Phys 2015; 17:20288-95. [DOI: 10.1039/c5cp02525g] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two newly synthesized Schiff base molecules are herein reported as anion sensors.
Collapse
Affiliation(s)
- Pritam Ghosh
- Surface Engineering & Tribology Group
- CSIR-Central Mechanical Engineering Research Institute
- Burdwan
- India
| | | | - Saibal Jana
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur-721 302
- India
| | | | - Priyabrata Banerjee
- Surface Engineering & Tribology Group
- CSIR-Central Mechanical Engineering Research Institute
- Burdwan
- India
- Academy of Scientific and Innovative Research at CSIR-CMERI
| |
Collapse
|
44
|
Ghosh P, Roy BG, Mukhopadhyay SK, Banerjee P. Recognition of fluoride anions at low ppm level inside living cells and from fluorosis affected tooth and saliva samples. RSC Adv 2015. [DOI: 10.1039/c5ra01720c] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple Schiff base chemosensor 2-((2-(2,4-dinitro phenyl)hydrazono)methyl)-4-nitrophenol (L) has been developed as a colorimetric and fluorimetric ‘turn on’ sensor for fluoride (F−).
Collapse
Affiliation(s)
- Pritam Ghosh
- Surface Engineering & Tribology Group
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur-713209
- India
| | | | | | - Priyabrata Banerjee
- Surface Engineering & Tribology Group
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur-713209
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|