1
|
Synthesis, Characterization and Biomimetic Activity of Heterogenized Dioxidomolybdenum(VI) Complex and Its Homogeneous Analogue. Top Catal 2022. [DOI: 10.1007/s11244-022-01747-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
2
|
Green and efficient removal of sulfides using oxo-peroxo tungsten(VI)-MIL-101(Cr) nanoreactor as heterogeneous recyclable catalyst. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Synthesis, crystal structure, spectral characterization, theoretical studies, and investigation of catalytic activity in selective oxidation of sulfides by oxo-peroxo tungsten(VI) Schiff base complex. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
4
|
Maurya MR, MAURYA SK, Kumar NR, Avecilla F, Gupta PRAM. Synthesis of Dioxidomolybdenum(VI) Complexes of N,N,N’,N’‐Tetrakis(2‐Hydroxyl‐3,5‐Disubstitutedbenzyl)‐1,2‐Diaminoethane, Their Trans‐metalation to Oxidovanadium(V) Complexes and catalytic Application. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mannar R. Maurya
- Indian Institute of Technology Roorkee Department of Chemistry Indian Institute of Technology Roorkee 247 667 Roorkee INDIA
| | | | - Naveen Ram Kumar
- Indian Institute of Technology Roorkee Chemistry Department of Chemistry 247 667 Roorkee INDIA
| | | | - Puneet RAM Gupta
- Indian Institute of Technology Bombay Chemistry IIT Roorkee 247667 Roorkee INDIA
| |
Collapse
|
5
|
Van Kerrebroeck R, Horsten T, Stevens CV. BROMIDE OXIDATION: A SAFE STRATEGY FOR ELECTROPHILIC BROMINATIONS. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Tomas Horsten
- Ghent University: Universiteit Gent Green Chemistry and Technology BELGIUM
| | | |
Collapse
|
6
|
Heydari N, Bikas R, Shaterian M, Lis T. Green solvent free epoxidation of olefins by a heterogenised hydrazone-dioxidotungsten(vi) coordination compound. RSC Adv 2022; 12:4813-4827. [PMID: 35425511 PMCID: PMC8981271 DOI: 10.1039/d1ra09217k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/27/2022] [Indexed: 12/19/2022] Open
Abstract
A new mononuclear tungsten coordination compound, [WO2L(CH3OH)] (1), was synthesized by the reaction of WCl6 and H2L (H2L = (E)-4-amino-N'-(5-bromo-2-hydroxybenzylidene)benzohydrazide) in methanol. Both the H2L and compound 1 were characterized by elemental analysis and UV-Vis, FT-IR and NMR spectroscopic methods. The molecular structure of compound 1 was also determined by single crystal X-ray analysis which confirmed the compound is a mononuclear coordination compound of cis-dioxidotungsten(vi) containing a free amine functionality on the ligand. Compound 1 was supported on propionyl chloride-functionalized silica gel by amidification reaction to obtain a heterogeneous catalyst. The obtained heterogeneous catalyst was characterized by FT-IR spectroscopy, thermal gravimetric analysis (TGA), diffuse-reflectance spectroscopy (DRS), X-ray diffraction analysis (XRD), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) and its catalytic activity was investigated in the epoxidation of olefins with hydrogen peroxide under solvent free conditions. The catalyst was successfully recovered several times and the recovered catalyst was also characterized by various methods including FT-IR, DRS, TGA, SEM and EDX analyses. The results indicated this heterogeneous catalytic system is an effective and selective catalyst for epoxidation of olefins and can be reused several times without significant change in its catalytic activity.
Collapse
Affiliation(s)
- Neda Heydari
- Department of Chemistry, Faculty of Science, University of Zanjan 45371-38791 Zanjan Iran
| | - Rahman Bikas
- Department of Chemistry, Faculty of Science, Imam Khomeini International University 34148-96818 Qazvin Iran
| | - Maryam Shaterian
- Department of Chemistry, Faculty of Science, University of Zanjan 45371-38791 Zanjan Iran
| | - Tadeusz Lis
- Faculty of Chemistry, University of Wroclaw Joliot-Curie 14 Wroclaw 50-383 Poland
| |
Collapse
|
7
|
Dongare G, Aswar A. Synthesis, spectral characterization, thermo-kinetic and biological studies of some complexes derived from tridentate hydrazone Schiff base. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Maurya MR, Maurya SK, Kumar N, Gupta P. Biomimetic Oxidative Bromination by
cis
‐Dioxidotungsten(VI) Complexes of Salan Type N,N’‐Capped Linear Tetradentate Amino Bisphenol. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mannar R. Maurya
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Shailendra K. Maurya
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Naveen Kumar
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Puneet Gupta
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| |
Collapse
|
9
|
Moulder CA, Kafle K, Cundari TR. Tungsten-Ligand Bond Strengths for 2p Elements Including σ- and π-Bond Strength Components, A Density Functional Theory and ab Initio Study. J Phys Chem A 2019; 123:7940-7949. [PMID: 31240921 DOI: 10.1021/acs.jpca.9b03272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three WVI crystal structures with multifarious metal-ligand bond types are used to theoretically predict homolytic metal-element bond enthalpies with 11 popular DFT functionals, MP2 wave function methods, and four common valence basis set/pseudopotentials in order to evaluate the accuracy and precision of the resultant bond enthalpy data. To our knowledge, for the first time, estimates of component metal-ligand σ- and π-bond strengths are computed. The WE (E = C, N, O) bond enthalpies have the consistent trend σ > second π > first π. In contrast, the element-element BDE trend for the 2p homologues is second π > first π > σ for nitrogen and oxygen, and σ > first π > second π for carbon. These differences may underpin the differences in stability trends and thus reactivity behavior for metal-element multiple bonds as compared to the element-element multiple bonds, and metal-element triple bonds versus their corresponding double bonded counterparts. For example, Odom et al. show that MeI nucleophilically attacks at the imide (M═N) rather than the nitride (M ≡ N) ligand; the relative π-bond strengths derived herein provide a thermodynamic rationalization for this site preference. In this study, it is deduced from the calculated thermodynamics that the W-oxo ligand is more congruous with a triple bond than a double bond, consistent with the bonding model set forth in the seminal 1961 Ballhausen-Gray paper.
Collapse
Affiliation(s)
- Catherine A Moulder
- Department of Chemistry & Center for Advanced Scientific Computing and Modeling (CASCaM) , University of North Texas , 1155 Union Circle, #305070 , Denton , Texas 76203-5017 , United States
| | - Kristina Kafle
- Department of Chemistry & Center for Advanced Scientific Computing and Modeling (CASCaM) , University of North Texas , 1155 Union Circle, #305070 , Denton , Texas 76203-5017 , United States
| | - Thomas R Cundari
- Department of Chemistry & Center for Advanced Scientific Computing and Modeling (CASCaM) , University of North Texas , 1155 Union Circle, #305070 , Denton , Texas 76203-5017 , United States
| |
Collapse
|
10
|
Maurya MR, Mengesha B, Maurya SK, Avecilla F. Synthesis, characterization and catalytic activity of dioxidouranium(VI) complexes of ONNO tetradentate Mannich bases. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.04.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Sabuzi F, Pomarico G, Floris B, Valentini F, Galloni P, Conte V. Sustainable bromination of organic compounds: A critical review. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Dioxidomolybdenum(VI) and dioxidouranium(VI) complexes as functional mimic of haloperoxidases catalytic activity in presence of H2O2–KBr–HClO4. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.11.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Herget K, Frerichs H, Pfitzner F, Tahir MN, Tremel W. Functional Enzyme Mimics for Oxidative Halogenation Reactions that Combat Biofilm Formation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707073. [PMID: 29920781 DOI: 10.1002/adma.201707073] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/18/2018] [Indexed: 06/08/2023]
Abstract
Transition-metal oxide nanoparticles and molecular coordination compounds are highlighted as functional mimics of halogenating enzymes. These enzymes are involved in halometabolite biosynthesis. Their activity is based upon the formation of hypohalous acids from halides and hydrogen peroxide or oxygen, which form bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities in follow-up reactions. Therefore, enzyme mimics and halogenating enzymes may be valuable tools to combat biofilm formation. Here, halogenating enzyme models are briefly described, enzyme mimics are classified according to their catalytic functions, and current knowledge about the settlement chemistry and adhesion of fouling organisms is summarized. Enzyme mimics with the highest potential are showcased. They may find application in antifouling coatings, indoor and outdoor paints, polymer membranes for water desalination, or in aquacultures, but also on surfaces for food packaging, door handles, hand rails, push buttons, keyboards, and other elements made of plastic where biofilms are present. The use of natural compounds, formed in situ with nontoxic and abundant metal oxide enzyme mimics, represents a novel and efficient "green" strategy to emulate and utilize a natural defense system for preventing bacterial colonization and biofilm growth.
Collapse
Affiliation(s)
- Karoline Herget
- Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55128, Mainz, Germany
| | - Hajo Frerichs
- Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55128, Mainz, Germany
| | - Felix Pfitzner
- Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55128, Mainz, Germany
| | - Muhammad Nawaz Tahir
- Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55128, Mainz, Germany
| | - Wolfgang Tremel
- Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55128, Mainz, Germany
| |
Collapse
|
14
|
Khatun R, Biswas S, Ghosh S, Islam SM. Polymer-anchored [Fe(III)Azo] complex: An efficient reusable catalyst for oxidative bromination and multi-components reaction for the synthesis of spiropiperidine derivatives. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|