1
|
Massoud SS, Mautner FA, Louka FR, Salem NMH, Fischer RC, Torvisco A, Vančo J, Belza J, Dvořák Z, Trávníček Z. Structurally diverse zinc(II) complexes containing tripodal tetradentate phenoxido-amines with promising antiproliferative effects. Dalton Trans 2024; 53:12261-12280. [PMID: 38980002 DOI: 10.1039/d4dt00942h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Structurally diverse zinc(II) complexes with tripodal tetradentate phenolic-amines of variable substituents in the phenol and amine moieties were synthesized and thoroughly characterized. The two dinuclear [Zn2(L1)2](ClO4)2·MeOH (1), [Zn2(L2)2](ClO4)2 (2), and four mononuclear [Zn(L3)(H2O)]·MeOH (3), [Zn(L4)] (4), [Zn(L5)] (5) and [Zn(L6)] (6) complexes revealed distorted octahedral, trigonal-bipyramidal or tetrahedral geometries. The free HL1 and H2L3-6 ligands, and complexes 1-6 were evaluated for in vitro cytotoxicity against human cancer cell lines (A2780, A2780R, PC-3 and 22Rv1) and normal healthy MRC-5 cells. Overall results revealed high-to-moderate cytotoxicity (with the best IC50 values for complex 6 ranging from 2.4 to 4.5 μM), which is however, significantly higher than that of the reference drug cisplatin. The moderately active complexes 1-4 showed considerable selectivity on A2780 cells (IC50 ≈ 16.3-19.5 μM) over MRC-5 ones (with IC50 >50 μM for 1, 2 and 4, and with IC50 >25 μM for 3). The complexes 1, 2, and 6 and the ligand H2L6 were chosen for subsequent deeper biological evaluations. Their time-resolved cellular uptake and other cellular effects in A2780 cells were studied, such as cell cycle profile, intracellular ROS production, induction of apoptosis and activation of caspases 3/7. Complexes 1 and 2 caused significant G0/G1 cell cycle arrest in A2780 cells and antioxidant effects at normal conditions. They showed only limited effects on cellular processes connected with cytotoxicity, i.e. induction of apoptosis, depletion of mitochondrial membrane potential, and autophagy. These findings can be at least partly attributed to the low ability of the complexes to enter the A2780 cells and the depression of metabolic activity of the target cancer cells.
Collapse
Affiliation(s)
- Salah S Massoud
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 43700, Lafayette, LA 70504, USA.
- Department of Chemistry, Faculty of Science, Alexandria University, Moharam Bey 21511, Alexandria, Egypt
| | - Franz A Mautner
- Institut für Physikalische and Theoretische Chemie, Technische Universität Graz, Stremayrgasse 9/II, A-8010, Graz, Austria.
| | - Febee R Louka
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 43700, Lafayette, LA 70504, USA.
| | - Nahed M H Salem
- Department of Chemistry, Faculty of Science, Alexandria University, Moharam Bey 21511, Alexandria, Egypt
| | - Roland C Fischer
- Institut für Anorganische Chemische, Technische Universität Graz, Stremayrgasse 9/V, A-8010 Graz, Austria
| | - Ana Torvisco
- Institut für Anorganische Chemische, Technische Universität Graz, Stremayrgasse 9/V, A-8010 Graz, Austria
| | - Ján Vančo
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic.
| | - Jan Belza
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic.
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic.
| |
Collapse
|
2
|
Pérez AL, Kemmerer A, Zapata AJ, Sartoris R, Gonzalez PJ, Urteaga R, Baggio R, Suarez S, Ramos CA, Dalosto SD, Rizzi AC, Brondino CD. Synthesis, structure, and characterisation of a ferromagnetically coupled dinuclear complex containing Co(II) ions in a high spin configuration and thiodiacetate and phenanthroline as ligands and of a series of isomorphous heterodinuclear complexes containing different Co : Zn ratios. Dalton Trans 2023; 52:14595-14605. [PMID: 37786344 DOI: 10.1039/d3dt02115g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
We report the synthesis, crystal structure, and characterisation of a dinuclear Co(II) compound with thiodiacetate (tda) and phenanthroline (phen) as ligands (1), and of a series of metal complexes isomorphous to 1 with different Co : Zn ratios (2, 4 : 1; 3, 1 : 1; 4, 1 : 4; 5, 1 : 10). General characterisation methodologies and X-ray data showed that all the synthesised complexes are isomorphous to Zn(II) and Cu(II) analogues (CSD codes: DUHXEL and BEBQII). 1 consists of centrosymmetric Co(II) ion dimers in which the ions are 3.214 Å apart, linked by two μ-O bridges. Each cobalt atom is in a distorted octahedral environment of the N2O3S type. UV-vis spectra of 1 and 5 are in line with high spin (S = 3/2) Co(II) ions in octahedral coordination and indicate that the electronic structure of both Co(II) ions in the dinuclear unit does not significantly change relative to that of the magnetically isolated Co(II) ion. EPR spectra of powder samples of 5 (Co : Zn ratio of 1 : 10) together with spectral simulation indicated high spin Co(II) ions with high rhombic distortion of the zfs [E/D = 0.31(1), D > 0]. DC magnetic susceptibility experiments on 1 and analysis of the data constraining the E/D value obtained by EPR yielded g = 2.595(7), |D| = 61(1) cm-1, and an intradimer ferromagnetic exchange coupling of J = 1.39(4) cm-1. EPR spectra as a function of Co : Zn ratio for both powder and single crystal samples confirmed that they result from two effective S' = 1/2 spins that interact through dipolar and isotropic exchange interactions to yield magnetically isolated S' = 1 centres and that interdimeric exchange interactions, putatively mediated by hydrophobic interactions between phen moieties, are negligible. The latter observation contrasts with that observed in the Cu(II) analogue, where a transition from S = 1 to S' = 1/2 was observed. Computational calculations indicated that the absence of the interdimeric exchange interaction in 1 is due to a lower Co(II) ion spin density delocalisation towards the metal ligands.
Collapse
Affiliation(s)
- Ana L Pérez
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, Ciudad Universitaria, S3000ZAA Santa Fe, Argentina.
- Instituto de Física del Litoral, Universidad Nacional del Litoral - CONICET, Güemes 3450, 3000 Santa Fe, Argentina
| | - Axel Kemmerer
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, Ciudad Universitaria, S3000ZAA Santa Fe, Argentina.
| | - Alejandro J Zapata
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, Ciudad Universitaria, S3000ZAA Santa Fe, Argentina.
| | - Rosana Sartoris
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, Ciudad Universitaria, S3000ZAA Santa Fe, Argentina.
| | - Pablo J Gonzalez
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, Ciudad Universitaria, S3000ZAA Santa Fe, Argentina.
| | - Raul Urteaga
- Instituto de Física del Litoral, Universidad Nacional del Litoral - CONICET, Güemes 3450, 3000 Santa Fe, Argentina
- Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, 3000 Santa Fe, Argentina
| | - Ricardo Baggio
- Gerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Sebastián Suarez
- Gerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Carlos A Ramos
- Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, Centro Atómico Bariloche, 8400, San Carlos de Bariloche, Río Negro, Argentina
| | - Sergio D Dalosto
- Instituto de Física del Litoral, Universidad Nacional del Litoral - CONICET, Güemes 3450, 3000 Santa Fe, Argentina
- Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, 3000 Santa Fe, Argentina
| | - Alberto C Rizzi
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, Ciudad Universitaria, S3000ZAA Santa Fe, Argentina.
| | - Carlos D Brondino
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, Ciudad Universitaria, S3000ZAA Santa Fe, Argentina.
| |
Collapse
|
3
|
Massoud SS, Louka FR, Salem NMH, Fischer RC, Torvisco A, Mautner FA, Vančo J, Belza J, Dvořák Z, Trávníček Z. Dinuclear doubly bridged phenoxido copper(II) complexes as efficient anticancer agents. Eur J Med Chem 2023; 246:114992. [PMID: 36525695 DOI: 10.1016/j.ejmech.2022.114992] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/12/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Two cationic [Cu2(L1-2)2](ClO4)2 (1, 2), and four neutral doubly bridged-phenoxido-copper(II) complexes [Cu2(L3-4)2] (3, 4) and [Cu2(L5-6)2(H2O)]‧2H2O (5, 6) as well as 1D polymeric catena-[Cu(L7)] (7), where HL1-2 and H2L3-7 represent tripodal tetradentate pyridyl or aliphatic-amino groups based 2,4-disubstituted phenolates, were synthesized and thoroughly characterized by various spectroscopic methods and single crystal X-ray analysis. The molecular structures of the complexes exhibited diverse geometrical environments around the central Cu(II) atoms. The in vitro antiproliferative activity of the isolated complexes and selected parent free ligands were screened against some human cancer cell lines (A2780, A2780R, PC-3, 22Rv1, MCF-7). The most promising cytotoxicity against cancer cells were obtained for 1-6, while complex 6 was found as the best performing as compared to the reference drug cisplatin. The cytotoxicity study of complex 6 was therefore extended to wider variety of cancer cell lines (HOS, A549, PANC-1, CaCo2, HeLa) and results revealed its significant cytotoxicity on all investigated human cancer cells. The cell uptake study showed that cytotoxicity of 6 (3 μM concentration and 24 h of incubation) against A2780 cells was almost independent from the intracellular levels of copper. The effect of complexes 4, 6 and 7 on cell cycle of A2780 cells indicates that the mechanism of action in these complexes is not only different from that of cisplatin but also different among them. Complex 7 was able to induce apoptosis in A2780 cells, while complexes 4 and 6 did not and on the other hand, they showed considerable effect on autophagy induction and there are some clues that these complexes were able to induce cuproptosis in A2780 cells.
Collapse
Affiliation(s)
- Salah S Massoud
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 43700, Lafayette, LA, 70504, USA; Department of Chemistry, Faculty of Science, Alexandria University, Moharam Bey, 21511, Alexandria, Egypt.
| | - Febee R Louka
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 43700, Lafayette, LA, 70504, USA
| | - Nahed M H Salem
- Department of Chemistry, Faculty of Science, Alexandria University, Moharam Bey, 21511, Alexandria, Egypt
| | - Roland C Fischer
- Institut für Anorganische Chemische, Technische Universität Graz, Stremayrgasse 9/V, A-8010, Graz, Austria
| | - Ana Torvisco
- Institut für Anorganische Chemische, Technische Universität Graz, Stremayrgasse 9/V, A-8010, Graz, Austria
| | - Franz A Mautner
- Institut für Physikalische and Theoretische Chemie, Technische Universität Graz, Stremayrgasse 9/II, A-8010, Graz, Austria.
| | - Ján Vančo
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University, Křížkovského 511/8, CZ-779 00, Olomouc, Czech Republic
| | - Jan Belza
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University, Křížkovského 511/8, CZ-779 00, Olomouc, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Zdeněk Trávníček
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University, Křížkovského 511/8, CZ-779 00, Olomouc, Czech Republic.
| |
Collapse
|
4
|
Jana A, Aher A, Brandao P, Sharda S, Bera P, Phadikar U, Manna SK, Mahapatra AK, Bera P. Dissociation of a tripodal pyridyl-pyrazole ligand and assortment of metal complex: Synthesis, structure, DFT, thermal stability, cytotoxicity, DNA cleavage, and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Thierer LM, Brooks SH, Weberg AB, Cui P, Zhang S, Gau MR, Manor BC, Carroll PJ, Tomson NC. Macrocycle-Induced Modulation of Internuclear Interactions in Homobimetallic Complexes. Inorg Chem 2022; 61:6263-6280. [PMID: 35422117 PMCID: PMC9252315 DOI: 10.1021/acs.inorgchem.2c00522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A synthetic route has been developed for a series of 3d homobimetallic complexes of Mn, Fe, Co, Ni, and Cu using three different pyridyldiimine and pyridyldialdimine macrocyclic ligands with ring sizes of 18, 20, and 22 atoms. Crystallographic analyses indicate that while the distances between the metals can be modulated by the size of the macrocycle pocket, the flexibility in the alkyl linkers used to construct the macrocycles enables the ligand to adjust the orientation of the PD(A)I fragments in response to the geometry of the [M2(μ-Cl)2]2+ core, particularly with respect to Jahn-Teller distortions. Analyses by UV-vis spectroscopy and SQUID magnetometry revealed deviations in the properties [M2(μ-Cl)2]2+-containing complexes bound by standard mononucleating ligands, highlighting the ability of macrocycles to use ring size to control the magnetic interactions of pseudo-octahedral, high-spin metal centers.
Collapse
Affiliation(s)
- Laura M. Thierer
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Sam H. Brooks
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Alexander B. Weberg
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Peng Cui
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Shaoguang Zhang
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael R. Gau
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Brian C. Manor
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J. Carroll
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Neil C. Tomson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
6
|
Gupta D, Gaur AK, Chauhan D, Thakur SK, Jeyapalan V, Singh S, Rajaraman G, Venkataramani S. Solid-state photochromic arylazopyrazole based transition metal complexes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00325b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new class of photoactive and chelating ligands L1-3 have been designed and synthesized by incorporating arylazo-3,5-dimethylpyrazole units in the ligand frameworks. Significantly they are designed in such a way...
Collapse
|
7
|
Oulmidi A, Radi S, Idir A, Zyad A, Kabach I, Nhiri M, Robeyns K, Rotaru A, Garcia Y. Synthesis and cytotoxicity against tumor cells of pincer N-heterocyclic ligands and their transition metal complexes. RSC Adv 2021; 11:34742-34753. [PMID: 35494785 PMCID: PMC9042687 DOI: 10.1039/d1ra05918a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
The complexes: [CoL2](ClO4)2 (1), [FeL2](ClO4)2 (2), [NiL2](ClO4)2 (3) and [MnLCl2] (4), with L = diethyl-1,1′-(pyridine-2,6-diyl)bis(5-methyl-1H-pyrazole-3-carboxylate), were synthesized and fully characterized. Structural analysis revealed two distinct patterns influenced by the counter ions where L acts as a tridentate chelating ligand. The in vitro antitumor activity of L and L′ (diethyl 2,2′-(pyridine-2,6-diylbis(5-methyl-1H-pyrazole-3,1-diyl)) diacetate) as well as their metal complexes, was tested by the measurement of their cytostatic and cytotoxic properties towards the blood cancer mastocytoma cell line P815. We have also investigated their interactions with the antioxidant enzyme system. As a result, [MnL′Cl2] (1′) exhibited the strongest activity compared to reference cis-platin with no cytotoxicity towards normal cells PBMCs (Peripheral Blood Mononuclear Cells). On the other hand, the antioxidant enzyme activity showed that the efficiency of metal complex 1′ against P815 tumor cells was via the rise in the SOD activity and inhibition of CAT enzyme activity. This proof of concept study allows disclosure of a new class of molecules in cancer therapeutics. The complexes: [CoL2](ClO4)2 (1), [FeL2](ClO4)2 (2), [NiL2](ClO4)2 (3) and [MnLCl2] (4), with L = diethyl-1,1′-(pyridine-2,6-diyl)bis(5-methyl-1H-pyrazole-3-carboxylate), were synthesized and fully characterized.![]()
Collapse
Affiliation(s)
- Afaf Oulmidi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I BP 524 60 000 Oujda Morocco +212-10472330.,Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain Belgium
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I BP 524 60 000 Oujda Morocco +212-10472330
| | - Abderrazak Idir
- Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immunopharmacology, Faculty of Sciences and Techniques, Sultan Moulay Slimane University Mailbox 523 23000 Beni Mellal Morocco
| | - Abdelmajid Zyad
- Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immunopharmacology, Faculty of Sciences and Techniques, Sultan Moulay Slimane University Mailbox 523 23000 Beni Mellal Morocco
| | - Imad Kabach
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology Tangier Morocco
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology Tangier Morocco
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain Belgium
| | - Aurelian Rotaru
- Department of Electrical Engineering and Computer Science, MANSiD Research Center, "Stefan cel Mare" University University Street, 13 Suceava 720229 Romania
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain Belgium
| |
Collapse
|
8
|
Arauzo A, Bartolomé E, Luzón J, Alonso PJ, Vlad A, Cazacu M, Zaltariov MF, Shova S, Bartolomé J, Turta C. Slow Magnetic Relaxation in {[CoCxAPy)] 2.15 H 2O} n MOF Built from Ladder-Structured 2D Layers with Dimeric SMM Rungs. Molecules 2021; 26:5626. [PMID: 34577095 PMCID: PMC8466197 DOI: 10.3390/molecules26185626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
We present the magnetic properties of the metal-organic framework {[CoCxAPy]·2.15 H2O}n (Cx = bis(carboxypropyl)tetramethyldisiloxane; APy = 4,4`-azopyridine) (1) that builds up from the stacking of 2D coordination polymers. The 2D-coordination polymer in the bc plane is formed by the adjacent bonding of [CoCxAPy] 1D two-leg ladders with Co dimer rungs, running parallel to the c-axis. The crystal packing of 2D layers shows the presence of infinite channels running along the c crystallographic axis, which accommodate the disordered solvate molecules. The Co(II) is six-coordinated in a distorted octahedral geometry, where the equatorial plane is occupied by four carboxylate oxygen atoms. Two nitrogen atoms from APy ligands are coordinated in apical positions. The single-ion magnetic anisotropy has been determined by low temperature EPR and magnetization measurements on an isostructural compound {[Zn0.8Co0.2CxAPy]·1.5 CH3OH}n (2). The results show that the Co(II) ion has orthorhombic anisotropy with the hard-axis direction in the C2V main axis, lying the easy axis in the distorted octahedron equatorial plane, as predicted by the ab initio calculations of the g-tensor. Magnetic and heat capacity properties at very low temperatures are rationalized within a S* = 1/2 magnetic dimer model with anisotropic antiferromagnetic interaction. The magnetic dimer exhibits slow relaxation of the magnetization (SMM) below 6 K in applied field, with a tlf ≈ 2 s direct process at low frequencies, and an Orbach process at higher frequencies with U/kB = 6.7 ± 0.5 K. This compound represents a singular SMM MOF built-up of Co-dimers with an anisotropic exchange interaction.
Collapse
Affiliation(s)
- Ana Arauzo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (J.L.); (P.J.A.); (J.B.)
| | - Elena Bartolomé
- Department of Mechanical Engineering, Escola Universitària Salesiana de Sarrià (EUSS), Passeig de Sant Joan Bosco, 74, 08017 Barcelona, Spain;
| | - Javier Luzón
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (J.L.); (P.J.A.); (J.B.)
- Centro Universitario de la Defensa, Ctra. de Huesca s/n, 50090 Zaragoza, Spain
| | - Pablo J. Alonso
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (J.L.); (P.J.A.); (J.B.)
| | - Angelica Vlad
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania; (A.V.); (M.C.); (M.F.Z.); (S.S.)
| | - Maria Cazacu
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania; (A.V.); (M.C.); (M.F.Z.); (S.S.)
| | - Mirela F. Zaltariov
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania; (A.V.); (M.C.); (M.F.Z.); (S.S.)
| | - Sergiu Shova
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania; (A.V.); (M.C.); (M.F.Z.); (S.S.)
| | - Juan Bartolomé
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (J.L.); (P.J.A.); (J.B.)
| | - Constantin Turta
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania; (A.V.); (M.C.); (M.F.Z.); (S.S.)
- Institute of Chemistry, Academy of Sciences of Moldova, Academiei 3, MD-2028 Chisinau, Moldova
| |
Collapse
|
9
|
Massoud SS, Louka FR, Dial MT, Malek AJ, Fischer RC, Mautner FA, Vančo J, Malina T, Dvořák Z, Trávníček Z. Identification of potent anticancer copper(ii) complexes containing tripodal bis[2-ethyl-di(3,5-dialkyl-1H-pyrazol-1-yl)]amine moiety. Dalton Trans 2021; 50:11521-11534. [PMID: 34346447 DOI: 10.1039/d1dt01724a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of heteroleptic copper(ii) complexes of the composition [Cu(L1-5)Cl]X, where X = ClO4 and/or PF6 and [bis(2-ethyl-di(3,5-dimethyl-1H-pyrazol-1-yl))-(6-methyl-(2-pyridylmethyl))]amine (L1), [bis(2-ethyl-di(3,5-dimethyl-1H-pyrazol-1-yl))-(3,4-dimethoxy-(2-pyridylmethyl))]amine (L2), [bis(2-ethyl-di(3,5-dimethyl-1H-pyrazol-1-yl)-(2-quinolymethyl)]amine (L3), [bis(2-ethyl-di(3,5-dimethyl-1H-pyrazolyl)-(di(3,5-dimethyl-1H-pyrazol-1-yl-methyl))]amine (L4) and [bis(2-ethyl-di(3,5-dimethyl-1H-pyrazol-1-yl)-(5-methyl-3-phenyl-1H-pyrazol-1-yl-methyl)]amine (L5), were prepared and thoroughly characterized including single-crystal X-ray diffraction technique. The in vitro cytotoxicity of complexes against A2780, A2780R, HOS and MCF-7 human cancer cell lines was evaluated using the MTT test. The results revealed that complexes [Cu(L1)Cl]PF6 (1-PF6), [Cu(L2)Cl]ClO4 (2-ClO4) and [Cu(L3)Cl]PF6 (3-PF6) are the most effective, with IC50 values ranging from 1.4 to 6.3 μM, thus exceeding the cytotoxic potential of metallodrug cisplatin (IC50 values ranging from 29.9 to 82.0 μM). The complexes [Cu(L4)Cl]PF6 (4-PF6) and [Cu(L5)Cl]PF6 (5-PF6) showed only moderate cytotoxicity against A2780, with IC50 = 53.6 μM, and 33.8 μM, respectively. The cell cycle profile, time-resolved cellular uptake, interactions with small sulfur-containing biomolecules (cysteine and glutathione), intracellular ROS production, induction of apoptosis and activation of caspases 3/7 were also evaluated in the case of the selected complexes. It has been found that the best performing complexes 1 and 2 cause cell arrest in the G2/M phase and induce apoptosis via the increase in production of ROS, dominantly due to the overproduction of superoxide.
Collapse
Affiliation(s)
- Salah S Massoud
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 43700, Lafayette, LA 70504, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Copper(II) Complexes with Tetradentate Piperazine-Based Ligands: DNA Cleavage and Cytotoxicity. INORGANICS 2021. [DOI: 10.3390/inorganics9020012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Five-coordinate Cu(II) complexes, [Cu(Ln)X]ClO4/PF6, where Ln = piperazine ligands bearing two pyridyl arms and X = ClO4− for Ln = L1 (1-ClO4), L2 (2-ClO4), L3 (3-ClO4), and L6 (6-ClO4) as well as [Cu(Ln)Cl]PF6 for Ln = L1 (1-Cl), L4 (4-Cl), and L5 (5-Cl) have been synthesized and characterized by spectroscopic techniques. The molecular structures of the last two complexes were determined by X-ray crystallography. In aqueous acetonitrile solutions, molar conductivity measurements and UV-VIS spectrophotometric titrations of the complexes revealed the hydrolysis of the complexes to [Cu(Ln)(H2O)]2+ species. The biological activity of the Cu(II) complexes with respect to DNA cleavage and cytotoxicity was investigated. At micromolar concentration within 2 h and pH 7.4, DNA cleavage rate decreased in the order: 1-Cl ≈ 1-ClO4 > 3-ClO4 ≥ 2-ClO4 with cleavage enhancements of up to 23 million. Complexes 4-Cl, 5-Cl, and 6-ClO4 were inactive. In order to elucidate the cleavage mechanism, the cleavage of bis(4-nitrophenyl)phosphate (BNPP) and reactive oxygen species (ROS) quenching studies were conducted. The mechanistic pathway of DNA cleavage depends on the ligand’s skeleton: while an oxidative pathway was preferable for 1-Cl/1-ClO4, DNA cleavage by 2-ClO4 and 3-ClO4 predominantly proceeds via a hydrolytic mechanism. Complexes 1-ClO4, 3-ClO4, and 5-Cl were found to be cytotoxic against A2780 cells (IC50 30–40 µM). In fibroblasts, the IC50 value was much higher for 3-ClO4 with no toxic effect.
Collapse
|
11
|
Bhattacharjee A, Das S, Das B, Roy P. Intercalative DNA binding, protein binding, antibacterial activities and cytotoxicity studies of a mononuclear copper(II) complex. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.119961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Perontsis S, Geromichalou E, Perdih F, Hatzidimitriou AG, Geromichalos GD, Turel I, Psomas G. Synthesis, structural determination, in vitro and in silico biological evaluation of divalent or trivalent cobalt complexes with indomethacin. J Inorg Biochem 2020; 212:111213. [PMID: 32889129 PMCID: PMC7416082 DOI: 10.1016/j.jinorgbio.2020.111213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 01/02/2023]
Abstract
The interaction of cobalt chloride with the non-steroidal anti-inflammatory drug indomethacin (Hindo) led to the formation of the polymeric complex [Co(indo-O)2(H2O)2(μ-Cl)]n·n(MeOH·H2O) bearing one chlorido bridge between the cobalt atoms. The presence of the nitrogen-donor co-ligands 2,2'-bipyridine (bipy), 2,2'-bipyridylamine (bipyam), 1,10-phenanthroline (phen) or 1H-imidazole (Himi) resulted in the isolation of complexes [Co2(μ-indo-O,O')2(indo-O)2(bipy)2(μ-H2O)]·3.3MeOH, [Co(indo-O,O')2(bipyam)]·0.9MeOH·0.2H2O, [Co(indo-O,O')2(phen)] (4) and [Co(indo-O)2(Himi)2] (5), respectively, where the indomethacin ligands were coordinated in diverse manners. The study of the affinity of the complexes for calf-thymus DNA revealed their intercalation between the DNA-bases. The binding of the complexes to albumins was also examined and the corresponding binding constants and binding subdomain were determined. The free radical scavenging activity of the compounds was evaluated towards 1,1-diphenyl-picrylhydrazyl and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid). Molecular modeling calculations may usually provide a molecular basis for the understanding of both the impairment of DNA by its binding with the studied complexes and the ability of these compounds to transportation through serum albumin proteins. This study can provide information for the elucidation of the mechanism of action of the compounds in a molecular level.
Collapse
Affiliation(s)
- Spyros Perontsis
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Elena Geromichalou
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Athens 11527, Greece
| | - Franc Perdih
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, 1000 Ljubljana, Slovenia
| | - Antonios G Hatzidimitriou
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - George D Geromichalos
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, 1000 Ljubljana, Slovenia
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
13
|
Massoud SS, Perez ZE, Courson JR, Fischer RC, Mautner FA, Vančo J, Čajan M, Trávníček Z. Slow magnetic relaxation in penta-coordinate cobalt(ii) field-induced single-ion magnets (SIMs) with easy-axis magnetic anisotropy. Dalton Trans 2020; 49:11715-11726. [DOI: 10.1039/d0dt02338h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two penta-coordinate [Co(Ln)(NCS)]ClO4 with substituted pyridyl based bispyrazolyl ligands have been structurally characterized. The complexes show an easy-axis magnetic anisotropy, large rhombicity and slow relaxation of magnetization.
Collapse
Affiliation(s)
- Salah S. Massoud
- Department of Chemistry
- University of Louisiana at Lafayette
- Lafayette
- USA
- Department of Chemistry
| | - Zoe E. Perez
- Department of Chemistry
- University of Louisiana at Lafayette
- Lafayette
- USA
| | | | - Roland C. Fischer
- Institut für Anorganische Chemie
- Technische Universität Graz
- A-8010 Graz
- Austria
| | - Franz A. Mautner
- Institut für Physikalische and Theoretische Chemie
- Technische Universität Graz
- A-8010 Graz
- Austria
| | - Ján Vančo
- Regional Centre of Advanced Technologies and Materials
- Division of Biologically Active Complexes and Molecular Magnets
- Palacký University in Olomouc
- CZ-783 71 Olomouc
- Czech Republic
| | - Michal Čajan
- Regional Centre of Advanced Technologies and Materials
- Division of Biologically Active Complexes and Molecular Magnets
- Palacký University in Olomouc
- CZ-783 71 Olomouc
- Czech Republic
| | - Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials
- Division of Biologically Active Complexes and Molecular Magnets
- Palacký University in Olomouc
- CZ-783 71 Olomouc
- Czech Republic
| |
Collapse
|
14
|
Zhu M, Jia Z, Qu Y, Qi Z, Zhao H, Wang N, Xing J, Liu J, Gao E. Four Ni(II), Co(III), Cd(II) complexes based on 5-(pyrazol-1-yl)nicotinic acid: synthesis, X-ray single crystal structure, in vitro cytotoxicity, apoptosis and molecular docking studies. J COORD CHEM 2019. [DOI: 10.1080/00958972.2018.1564911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mingchang Zhu
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Zhili Jia
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Yun Qu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenzhen Qi
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Hongwei Zhao
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Ning Wang
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Jialing Xing
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Jiaxing Liu
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Enjun Gao
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| |
Collapse
|
15
|
Massoud SS, Louka FR, Tusa AF, Bordelon NE, Fischer RC, Mautner FA, Vančo J, Hošek J, Dvořák Z, Trávníček Z. Copper(ii) complexes based on tripodal pyridyl amine derivatives as efficient anticancer agents. NEW J CHEM 2019. [DOI: 10.1039/c9nj00061e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The in vitro cytotoxicity of a series of chlorido-Cu(ii) complexes based on tripod pyridyl N4-donor derivatives revealed significant-to-moderate cytotoxicity against human cancer cell lines with the best results obtained for [Cu(BQPA)Cl]ClO4/PF6 (5-ClO4/PF6) with IC50 values of 4.7–10.8 μM.
Collapse
Affiliation(s)
- Salah S. Massoud
- Department of Chemistry
- University of Louisiana at Lafayette
- Lafayette
- USA
| | - Febee R. Louka
- Department of Chemistry
- University of Louisiana at Lafayette
- Lafayette
- USA
| | - Ada F. Tusa
- Department of Chemistry
- University of Louisiana at Lafayette
- Lafayette
- USA
| | | | - Roland C. Fischer
- Institut für Anorganische Chemische
- Technische Universität Graz
- A-8010 Graz
- Austria
| | - Franz A. Mautner
- Institut für Physikalische and Theoretische Chemie
- Technische Universität Graz
- Graz
- Austria
| | - Ján Vančo
- Division of Biologically Active Complexes and Molecular Magnets
- Regional Centre of Advanced Technologies and Materials
- Faculty of Science
- Palacký University
- CZ-783 71 Olomouc
| | - Jan Hošek
- Division of Biologically Active Complexes and Molecular Magnets
- Regional Centre of Advanced Technologies and Materials
- Faculty of Science
- Palacký University
- CZ-783 71 Olomouc
| | - Zdeněk Dvořák
- Division of Biologically Active Complexes and Molecular Magnets
- Regional Centre of Advanced Technologies and Materials
- Faculty of Science
- Palacký University
- CZ-783 71 Olomouc
| | - Zdeněk Trávníček
- Division of Biologically Active Complexes and Molecular Magnets
- Regional Centre of Advanced Technologies and Materials
- Faculty of Science
- Palacký University
- CZ-783 71 Olomouc
| |
Collapse
|
16
|
Sadhu MH, Saini JK, Ingle SS, Kumar SB. Mononuclear Copper(II) Halide Complexes with Tetradentate N 3
S-Coordinate Ligands: Synthesis, Structures and Bioactivities. ChemistrySelect 2018. [DOI: 10.1002/slct.201800306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mehul H. Sadhu
- Department of Chemistry; The Maharaja Sayajirao University of Baroda; Vadodara- 390002 India
| | - Jaswinder K. Saini
- Department of Microbiology and Biotechnology; The Maharaja Sayajirao University of Baroda; Vadodara- 390002 India
| | - Sanjay S. Ingle
- Department of Microbiology and Biotechnology; The Maharaja Sayajirao University of Baroda; Vadodara- 390002 India
| | - Sujit B. Kumar
- Department of Chemistry; The Maharaja Sayajirao University of Baroda; Vadodara- 390002 India
| |
Collapse
|
17
|
Lechuga‐Islas V, Tlahuext H, Falcón‐León MP, Sánchez‐De Jesús F, Moo‐Puc RE, Chale‐Dzul JB, Tapia‐Benavides AR, Tlahuextl M. Regulating Noncovalent Interactions in Amino‐Amide–Copper Complexes. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Víctor Lechuga‐Islas
- Chemistry Department Universidad Autónoma del Estado de Hidalgo 4.5, M. de la Reforma 42184 Pachuca‐Tulacingo Hgo México
| | - Hugo Tlahuext
- Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad 1001 62100 Cuernavaca Mor México
| | - Martha P. Falcón‐León
- Chemistry Department Universidad Autónoma del Estado de Hidalgo 4.5, M. de la Reforma 42184 Pachuca‐Tulacingo Hgo México
| | - Félix Sánchez‐De Jesús
- Área Académica de Ciencias de la Tierra y Materiales Universidad Autónoma del Estado de Hidalgo 4.5, M. de la Reforma 42184 Pachuca‐Tulancingo Hgo México
| | - Rosa E. Moo‐Puc
- Unidad de Investigación Médica Yucatán Instituto Mexicano del Seguro Social Calle 41439 97150 Mérida Yuc México
| | - Juan B. Chale‐Dzul
- Laboratorio de Vigilancia e Investigación Epidemiológica Instituto Mexicano del Seguro Social Calle 41439 97150 Mérida Yuc México
| | - Antonio R. Tapia‐Benavides
- Chemistry Department Universidad Autónoma del Estado de Hidalgo 4.5, M. de la Reforma 42184 Pachuca‐Tulacingo Hgo México
| | - Margarita Tlahuextl
- Chemistry Department Universidad Autónoma del Estado de Hidalgo 4.5, M. de la Reforma 42184 Pachuca‐Tulacingo Hgo México
| |
Collapse
|
18
|
Zhang Y, Harriman KLM, Brunet G, Pialat A, Gabidullin B, Murugesu M. Reversible Redox, Spin Crossover, and Superexchange Coupling in 3
d
Transition‐Metal Complexes of
Bis
‐azinyl Analogues of 2,2′:6′,2′′‐Terpyridine. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yixin Zhang
- Department of Chemistry University of Ottawa 10 Marie Curie K1N 6N5 Ottawa Ontario Canada
| | - Katie L. M. Harriman
- Department of Chemistry University of Ottawa 10 Marie Curie K1N 6N5 Ottawa Ontario Canada
| | - Gabriel Brunet
- Department of Chemistry University of Ottawa 10 Marie Curie K1N 6N5 Ottawa Ontario Canada
| | - Amélie Pialat
- Department of Chemistry University of Ottawa 10 Marie Curie K1N 6N5 Ottawa Ontario Canada
| | - Bulat Gabidullin
- Department of Chemistry University of Ottawa 10 Marie Curie K1N 6N5 Ottawa Ontario Canada
| | - Muralee Murugesu
- Department of Chemistry University of Ottawa 10 Marie Curie K1N 6N5 Ottawa Ontario Canada
| |
Collapse
|
19
|
Massoud SS, Louka FR, Ducharme GT, Fischer RC, Mautner FA, Vančo J, Herchel R, Dvořák Z, Trávníček Z. Copper(II) complexes based on tripodal pyrazolyl amines: Synthesis, structure, magnetic properties and anticancer activity. J Inorg Biochem 2017; 180:39-46. [PMID: 29232637 DOI: 10.1016/j.jinorgbio.2017.11.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 12/11/2022]
Abstract
The Cu(II) complexes [Cu(bpdmpz)Cl]ClO4 (1), [Cu(bdmpzp)Cl]ClO4 (2-ClO4), [Cu(bdmpzp)Cl]PF6 (2-PF6) and [Cu(tdmpza)Cl]ClO4 (3), bpdmpzp=[bis[((2-pyridylmethyl)-di(3,5-dimethyl-1H-pyrazolyl)methyl)]amine, bdmpzp=[bis((di(3,5-dimethyl-1H-pyrazolyl)methyl)-(2-pyridylmethyl)]amine and tdmpza=tris[di(3,5-dimethyl-1H-pyrazolyl)-methyl)]amine were synthesized and characterized by elemental analysis, magnetic and conductivity measurements, electrospray-ionization mass spectrometry, infrared and electronic spectroscopy, and X-ray crystallography. The magnetic properties of the complexes, measured at variable temperature, revealed weak antiferromagnetic intermolecular interactions. The cytotoxicity of the complexes 1, 2-ClO4, 3, and 4 ([Cu(bedmpzp)Cl]PF6, where bedmpzp=[bis(3,5-dimethyl-1H-pyrazol-1-yl-1-ethyl)-(2-pyridylmethyl)]amine), was investigated against four human cancer cell lines: A2780 (ovarian), A2780R (cisplatin-resistant variant), HOS (aggressive bone tumors), CaCo2 (epithelial colorectal adenocarcinoma) and on healthy human hepatocytes. The complex 4 was the most cytotoxic one, with IC50=1.4μM (A2780), 8.3μM (A2780R), 4.7μM (HOS) and 10.8μM (CaCo2). The mass spectrometry-based interaction studies, involving selected sulfur-containing biomolecules and small model proteins, revealed pro-oxidant effects of complexes 1 and 4 and differences in stability of both complexes in the mixtures containing the model protein cytochrome c after 24h incubation, complex 1 formed 1:1 adduct, the formation of which was accompanied by the loss of one dimethylpyrazole pendant arm from the bpdmpz ligand, while the complex 4 composition remained intact and the complex formed both 1:1 and 1:2 adducts (cytochrome c vs. Cu(II)-complex).
Collapse
Affiliation(s)
- Salah S Massoud
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA.
| | - Febee R Louka
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Gerard T Ducharme
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Roland C Fischer
- Institut für Anorganische Chemische, Technische Universität Graz, Stremayrgasse 9/V, A-8010 Graz, Austria
| | - Franz A Mautner
- Institut für Physikalische and Theoretische Chemie, Technische Universität Graz, Stremayrgasse 9/II, A-8010 Graz, Austria.
| | - Ján Vančo
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Radovan Herchel
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Zdeněk Dvořák
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Zdeněk Trávníček
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
20
|
Sadhu MH, Kumar SB, Saini JK, Purani SS, Khanna TR. Mononuclear copper(II) and binuclear cobalt(II) complexes with halides and tetradentate nitrogen coordinate ligand: Synthesis, structures and bioactivities. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Liu JJ, Jiang SD, Neugebauer P, van Slageren J, Lan Y, Wernsdorfer W, Wang BW, Gao S. Magnetic and HFEPR Studies of Exchange Coupling in a Series of μ-Cl Dicobalt Complexes. Inorg Chem 2017; 56:2417-2425. [DOI: 10.1021/acs.inorgchem.6b02368] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jia-Jia Liu
- National Laboratory for Molecular Sciences, State Key
Laboratory of Rare Earth Materials Chemistry and Applications, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Shang-Da Jiang
- National Laboratory for Molecular Sciences, State Key
Laboratory of Rare Earth Materials Chemistry and Applications, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Petr Neugebauer
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart D-70569, Germany
| | - Joris van Slageren
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart D-70569, Germany
| | - Yanhua Lan
- Institut Néel−CNRS, 25 Avenue des Martyrs, BP 166, 38042 Grenoble Cedex 9, France
| | - Wolfgang Wernsdorfer
- Institut Néel−CNRS, 25 Avenue des Martyrs, BP 166, 38042 Grenoble Cedex 9, France
| | - Bing-Wu Wang
- National Laboratory for Molecular Sciences, State Key
Laboratory of Rare Earth Materials Chemistry and Applications, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Song Gao
- National Laboratory for Molecular Sciences, State Key
Laboratory of Rare Earth Materials Chemistry and Applications, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
22
|
Nemec I, Herchel R, Machata M, Trávníček Z. Tetranuclear Ni(ii) and Co(ii) Schiff-base complexes with an M4O6 defective dicubane-like core: zero-field SMM behavior in the cobalt analogue. NEW J CHEM 2017. [DOI: 10.1039/c7nj02281f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two tetranuclear Ni4 and Co4 complexes were prepared and characterized. Their magnetic properties were thoroughly studied and it was revealed that the Co4 compound behaves as a zero-field single-molecule magnet.
Collapse
Affiliation(s)
- Ivan Nemec
- Department of Inorganic Chemistry
- Regional Centre of Advanced Technologies and Materials
- Faculty of Science
- Palacký University
- CZ-771 46 Olomouc
| | - Radovan Herchel
- Department of Inorganic Chemistry
- Regional Centre of Advanced Technologies and Materials
- Faculty of Science
- Palacký University
- CZ-771 46 Olomouc
| | - Marek Machata
- Department of Inorganic Chemistry
- Regional Centre of Advanced Technologies and Materials
- Faculty of Science
- Palacký University
- CZ-771 46 Olomouc
| | - Zdeněk Trávníček
- Department of Inorganic Chemistry
- Regional Centre of Advanced Technologies and Materials
- Faculty of Science
- Palacký University
- CZ-771 46 Olomouc
| |
Collapse
|