1
|
Gribkova O, Kabanova V, Sayarov I, Nekrasov A, Tameev A. Near-Infrared Responsive Composites of Poly-3,4-Ethylenedioxythiophene with Fullerene Derivatives. Polymers (Basel) 2024; 17:14. [PMID: 39795418 PMCID: PMC11723435 DOI: 10.3390/polym17010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Electrochemical polymerization of 3,4-ethylenedioxythiophene in the presence of water-soluble fullerene derivatives was investigated. The electronic structure, morphology, spectroelectrochemical, electrochemical properties and near-IR photoconductivity of composite films of poly(3,4-ethylenedioxythiophene) with fullerenes were studied for the first time. It was shown that fullerene with hydroxyl groups creates favorable conditions for the formation of PEDOT chains and more effectively compensates for the positive charges on the PEDOT chains. The near-IR photoconductivity results from the generation of charge carriers due to electron transfer from the photoexcited PEDOT molecule to the fullerene acceptor.
Collapse
Affiliation(s)
| | | | | | | | - Alexey Tameev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninskii Prospect 31, Moscow 119071, Russia; (O.G.); (V.K.); (I.S.); (A.N.)
| |
Collapse
|
2
|
Furlani F, Campodoni E, Sangiorgi N, Montesi M, Sanson A, Sandri M, Panseri S. Electroconductive scaffolds based on gelatin and PEDOT:PSS for cardiac regeneration. Int J Biol Macromol 2022; 224:266-280. [DOI: 10.1016/j.ijbiomac.2022.10.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
3
|
Furlani F, Montanari M, Sangiorgi N, Saracino E, Campodoni E, Sanson A, Benfenati V, Tampieri A, Panseri S, Sandri M. Electroconductive and injectable hydrogels based on gelatin and PEDOT:PSS for a minimally invasive approach in nervous tissue regeneration. Biomater Sci 2022; 10:2040-2053. [PMID: 35302129 DOI: 10.1039/d2bm00116k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
This work describes the development of electroconductive hydrogels as injectable matrices for neural tissue regeneration by exploiting a biocompatible conductive polymer - poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) - combined with a biomimetic polymer network made of gelatin. Our approach involved also genipin - a natural cross-linking agent - to promote gelation of gelatin networks embedding PEDOT:PSS. The achieved results suggest that physical-chemical properties of the resulting hydrogels, like impedance, gelation time, mechanical properties, swelling and degradation in physiological conditions, can be finely tuned by the amount of PEDOT:PSS and genipin used in the formulation. Furthermore, the presence of PEDOT:PSS (i) enhances the electrical conductivity, (ii) improves the shear modulus of the resulting hydrogels though (iii) partially impairing their resistance to shear deformation, (iv) reduces gelation time and (v) reduces their swelling ability in physiological medium. Additionally, the resulting electroconductive hydrogels demonstrate enhanced adhesion and growth of primary rat cortical astrocytes. Given the permissive interaction of hydrogels with primary astrocytes, the presented biomimetic, electroconductive and injectable hydrogels display potential applications as minimally invasive systems for neurological therapies and damaged brain tissue repair.
Collapse
Affiliation(s)
- Franco Furlani
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Margherita Montanari
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Nicola Sangiorgi
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Emanuela Saracino
- National Research Council of Italy - Institute of Organic Synthesis and Photoreactivity (ISOF-CNR), via Gobetti, 101, I - 40129, Bologna, Italy
| | - Elisabetta Campodoni
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Alessandra Sanson
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Valentina Benfenati
- National Research Council of Italy - Institute of Organic Synthesis and Photoreactivity (ISOF-CNR), via Gobetti, 101, I - 40129, Bologna, Italy
| | - Anna Tampieri
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Silvia Panseri
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| | - Monica Sandri
- National Research Council of Italy - Institute of Science and Technology for Ceramics, (ISTEC-CNR), Via Granarolo 64, I - 48018, Faenza, RA, Italy.
| |
Collapse
|
4
|
Dominguez-Alfaro A, Gómez IJ, Alegret N, Mecerreyes D, Prato M. 2D and 3D Immobilization of Carbon Nanomaterials into PEDOT via Electropolymerization of a Functional Bis-EDOT Monomer. Polymers (Basel) 2021; 13:436. [PMID: 33573011 PMCID: PMC7866415 DOI: 10.3390/polym13030436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/26/2022] Open
Abstract
Carbon nanomaterials (CNMs) and conjugated polymers (CPs) are actively investigated in applications such as optics, catalysis, solar cells, and tissue engineering. Generally, CNMs are implemented in devices where the relationship between the active elements and the micro and nanostructure has a crucial role. However, they present some limitations related to solubility, processibility and release or degradability that affect their manufacturing. CPs, such as poly(3,4-ethylenedioxythiophene) (PEDOT) or derivatives can hide this limitation by electrodeposition onto an electrode. In this work we have explored two different CNMs immobilization methods in 2D and 3D structures. First, CNM/CP hybrid 2D films with enhanced electrochemical properties have been developed using bis-malonyl PEDOT and fullerene C60. The resulting 2D films nanoparticulate present novel electrochromic properties. Secondly, 3D porous self-standing scaffolds were prepared, containing carbon nanotubes and PEDOT by using the same bis-EDOT co-monomer, which show porosity and topography dependence on the composition. This article shows the validity of electropolymerization to obtain 2D and 3D materials including different carbon nanomaterials and conductive polymers.
Collapse
Affiliation(s)
- Antonio Dominguez-Alfaro
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain; (A.D.-A.); (I.J.G.); (D.M.); (M.P.)
- POLYMAT, University of the Basque Country, UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - I. Jénnifer Gómez
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain; (A.D.-A.); (I.J.G.); (D.M.); (M.P.)
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Nuria Alegret
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain; (A.D.-A.); (I.J.G.); (D.M.); (M.P.)
- POLYMAT, University of the Basque Country, UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - David Mecerreyes
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain; (A.D.-A.); (I.J.G.); (D.M.); (M.P.)
- Basque Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Maurizio Prato
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain; (A.D.-A.); (I.J.G.); (D.M.); (M.P.)
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
- Basque Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| |
Collapse
|