1
|
Baidya M, Maiti D, Roy L, De Sarkar S. Trifluoroethanol as a Unique Additive for the Chemoselective Electrooxidation of Enamines to Access Unsymmetrically Substituted NH‐Pyrroles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mrinmay Baidya
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Debabrata Maiti
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai IOC Odisha Campus Bhubaneswar IIT Kharagpur Extension Centre Bhubaneswar 751013 India
| | - Suman De Sarkar
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| |
Collapse
|
2
|
Baidya M, Maiti D, Roy L, De Sarkar S. Trifluoroethanol as a Unique Additive for the Chemoselective Electrooxidation of Enamines to Access Unsymmetrically Substituted NH-Pyrroles. Angew Chem Int Ed Engl 2021; 61:e202111679. [PMID: 34851544 DOI: 10.1002/anie.202111679] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/15/2021] [Indexed: 01/31/2023]
Abstract
An electrochemical method for the synthesis of unsymmetrically substituted NH-pyrroles is described. The synthetic strategy comprises a challenging heterocoupling between two structurally diverse enamines via sequential chemoselective oxidation, addition, and cyclization processes. A series of aryl- and alkyl-substituted enamines were effectively cross-coupled from an equimolar mixture to synthesize various unsymmetrical pyrrole derivatives up to 84 % yield. The desired cross-coupling was achieved by tuning the oxidation potential of the enamines by utilizing a "magic effect" of the additive trifluoroethanol (TFE). Additionally, extensive computational studies reveal the unique role of TFE in promoting the heterocoupling process by regulating the activation energies of the reaction steps through H-bonding and C-H⋅⋅⋅π interactions. Importantly, the developed electrochemical protocol was found to be equally efficient for the homocoupling of enamines to form symmetric pyrroles up to 92 % yield.
Collapse
Affiliation(s)
- Mrinmay Baidya
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Debabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar, 751013, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| |
Collapse
|
3
|
The direct C(sp2)-H functionalization and coupling of aromatic N-heterocycles with (hetero)aryl bromides by [PdX2(imidazolidin-2-ylidene)(Py)] catalysts. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Hunjan MK, Panday S, Gupta A, Bhaumik J, Das P, Laha JK. Recent Advances in Functionalization of Pyrroles and their Translational Potential. CHEM REC 2021; 21:715-780. [PMID: 33650751 DOI: 10.1002/tcr.202100010] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/25/2022]
Abstract
Among the known aromatic nitrogen heterocycles, pyrrole represents a privileged aromatic heterocycle ranging its occurrence in the key component of "pigments of life" to biologically active natural products to active pharmaceuticals. Pyrrole being an electron-rich heteroaromatic compound, its predominant functionalization is legendary to aromatic electrophilic substitution reactions. Although a few excellent reviews on the functionalization of pyrroles including the reports by Baltazzi in 1963, Casiraghi and Rassu in 1995, and Banwell in 2006 are available, they are fragmentary and over fifteen years old, and do not cover the modern aspects of catalysis. A review covering a comprehensive package of direct functionalization on pyrroles via catalytic and non-catalytic methods including their translational potential is described. Subsequent to statutory yet concise introduction, the classical functionalization on pyrroles using Lewis acids largely following an ionic mechanism is discussed. The subsequent discussion follows the various metal-catalyzed C-H functionalization on pyrroles, which are otherwise difficult to implement by Lewis acids. A major emphasize is given on the radical based pyrrole functionalization under metal-free oxidative conditions, which is otherwise poorly highlighted in the literature. Towards the end, the current development of pyrrole functionalization under photocatalyzed and electrochemical conditions is appended. Only a selected examples of substrates and important mechanisms are discussed for different methods highlighting their scopes and limitations. The aromatic nucleophillic substitution on pyrroles (being an electron-rich heterocycle) happened to be the subject of recent investigations, which has also been covered accentuating their underlying conceptual development. Despite great achievements over the past several years in these areas, many challenges and problems are yet to be solved, which are all discussed in summary and outlook.
Collapse
Affiliation(s)
- Mandeep Kaur Hunjan
- Department of Pharmaceutial Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Mohali, 160062, India
| | - Surabhi Panday
- Department of Pharmaceutial Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Mohali, 160062, India
| | - Anjali Gupta
- Department of Pharmaceutial Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Mohali, 160062, India
| | - Jayeeta Bhaumik
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S., Nagar, 140306, Punjab, India
| | - Parthasarathi Das
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, 826004, India
| | - Joydev K Laha
- Department of Pharmaceutial Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Mohali, 160062, India
| |
Collapse
|
5
|
Kaloğlu M, Kaloğlu N, Özdemir İ. Palladium-PEPPSI-NHC Complexes Bearing Imidazolidin-2-Ylidene Ligand: Efficient Precatalysts for the Direct C5-Arylation of N-Methylpyrrole-2-Carboxaldehyde. Catal Letters 2021. [DOI: 10.1007/s10562-021-03561-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Kanwal S, Ann NU, Fatima S, Emwas AH, Alazmi M, Gao X, Ibrar M, Zaib Saleem RS, Chotana GA. Facile Synthesis of NH-Free 5-(Hetero)Aryl-Pyrrole-2-Carboxylates by Catalytic C-H Borylation and Suzuki Coupling. Molecules 2020; 25:molecules25092106. [PMID: 32365945 PMCID: PMC7248765 DOI: 10.3390/molecules25092106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 11/25/2022] Open
Abstract
A convenient two-step preparation of NH-free 5-aryl-pyrrole-2-carboxylates is described. The synthetic route consists of catalytic borylation of commercially available pyrrole-2-carboxylate ester followed by Suzuki coupling without going through pyrrole N–H protection and deprotection steps. The resulting 5-aryl substituted pyrrole-2-carboxylates were synthesized in good- to excellent yields. This synthetic route can tolerate a variety of functional groups including those with acidic protons on the aryl bromide coupling partner. This methodology is also applicable for cross-coupling with heteroaryl bromides to yield pyrrole-thiophene, pyrrole-pyridine, and 2,3’-bi-pyrrole based bi-heteroaryls.
Collapse
Affiliation(s)
- Saba Kanwal
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan; (S.K.); (N.-u.-A.); (S.F.); (M.I.); (R.S.Z.S.)
| | - Noor-ul- Ann
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan; (S.K.); (N.-u.-A.); (S.F.); (M.I.); (R.S.Z.S.)
| | - Saman Fatima
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan; (S.K.); (N.-u.-A.); (S.F.); (M.I.); (R.S.Z.S.)
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Meshari Alazmi
- Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.A.); (X.G.)
- College of Computer Science and Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81481, Saudi Arabia
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.A.); (X.G.)
| | - Maha Ibrar
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan; (S.K.); (N.-u.-A.); (S.F.); (M.I.); (R.S.Z.S.)
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan; (S.K.); (N.-u.-A.); (S.F.); (M.I.); (R.S.Z.S.)
| | - Ghayoor Abbas Chotana
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan; (S.K.); (N.-u.-A.); (S.F.); (M.I.); (R.S.Z.S.)
- Correspondence: ; Tel.: +92-42-3560-8281
| |
Collapse
|
7
|
Abstract
In this contribution, we provide a comprehensive overview of C-H activation methods promoted by NHC-transition metal complexes, covering the literature since 2002 (the year of the first report on metal-NHC-catalyzed C-H activation) through June 2019, focusing on both NHC ligands and C-H activation methods. This review covers C-H activation reactions catalyzed by group 8 to 11 NHC-metal complexes. Through discussing the role of NHC ligands in promoting challenging C-H activation methods, the reader is provided with an overview of this important area and its crucial role in forging carbon-carbon and carbon-heteroatom bonds by directly engaging ubiquitous C-H bonds.
Collapse
Affiliation(s)
- Qun Zhao
- Department of Chemistry , Rutgers University , 73 Warren Street , Newark , New Jersey 07102 , United States
| | - Guangrong Meng
- Department of Chemistry , Rutgers University , 73 Warren Street , Newark , New Jersey 07102 , United States
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry , Ghent University , Krijgslaan 281 , 9000 Ghent , Belgium
| | - Michal Szostak
- Department of Chemistry , Rutgers University , 73 Warren Street , Newark , New Jersey 07102 , United States
| |
Collapse
|
8
|
Yiğit B, Özge Karaca E, Yiğit M, Gürbüz N, Arslan H, Özdemir İ. Active ruthenium(II)-NHC complexes for alkylation of amines with alcohols using solvent-free conditions. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Yamaguchi M, Fujiwara S, Manabe K. Synthesis of 2,2,5-Trisubstituted 2H-Pyrroles and 2,3,5-Trisubstituted 1H-Pyrroles by Ligand-Controlled Site-Selective Dearomative C2-Arylation and Direct C3-Arylation. Org Lett 2019; 21:6972-6977. [DOI: 10.1021/acs.orglett.9b02559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Miyuki Yamaguchi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Sakiko Fujiwara
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kei Manabe
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
10
|
Kaloğlu M, Kaloğlur N, Özdemir İ. Direct C-H Bond Activation of Benzoxazole and Benzothiazole with Aryl Bromides Catalyzed by Palladium(II)-N-
heterocyclic Carbene Complexes. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800166] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Murat Kaloğlu
- Department of Chemistry, Faculty of Science and Arts; İnönü University; 44280 Malatya Turkey
- Catalysis Research and Application Center; İnönü University; 44280 Malatya Turkey
| | - Nazan Kaloğlur
- Department of Chemistry, Faculty of Science and Arts; İnönü University; 44280 Malatya Turkey
- Catalysis Research and Application Center; İnönü University; 44280 Malatya Turkey
| | - İsmail Özdemir
- Department of Chemistry, Faculty of Science and Arts; İnönü University; 44280 Malatya Turkey
| |
Collapse
|
11
|
Kaloğlu M, Özdemir İ. Palladium(II)- N -heterocyclic carbene-catalyzed direct C2- or C5-arylation of thiazoles with aryl bromides. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.03.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Kaloğlu M, Kaloğlu N, Özdemir İ. Direct C-H Bond Arylation of C2-Blocked Pyrrole with Aryl Halides Using Palladium(II)-N
-Heterocyclic Carbene Catalysts. ChemistrySelect 2018. [DOI: 10.1002/slct.201801045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Murat Kaloğlu
- Department of Chemistry; İnönü University, Faculty of Science and Arts; 44280 Malatya Turkey
- Catalysis Research and Application Center; İnönü University; 44280 Malatya Turkey
| | - Nazan Kaloğlu
- Department of Chemistry; İnönü University, Faculty of Science and Arts; 44280 Malatya Turkey
- Catalysis Research and Application Center; İnönü University; 44280 Malatya Turkey
| | - İsmail Özdemir
- Department of Chemistry; İnönü University, Faculty of Science and Arts; 44280 Malatya Turkey
- Catalysis Research and Application Center; İnönü University; 44280 Malatya Turkey
| |
Collapse
|