1
|
Theoretical Analysis of Polynuclear Zinc Complexes Isolobally Related to Hydrocarbons. Int J Mol Sci 2022; 23:ijms232314858. [PMID: 36499186 PMCID: PMC9736195 DOI: 10.3390/ijms232314858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Based on the isolobal analogy of ZnCp (Cp = η5-C5H5) and ZnR (R = alkyl or aryl group) fragments with hydrogen atom and fragment [Zn(CO)2] with a CH2 carbene, the following complexes [(ZnCp)2{µ-Zn(CO)2}], 1, [(ZnPh)2{µ-Zn(CO)2}], 2, [(ZnPh){µ-Zn(CO)2}(ZnCp)], 3, [(ZnCp)2{µ-Zn2(CO)4}], 4, [(ZnPh)2{µ-Zn2(CO)4}], 5, [(ZnPh){µ-Zn(CO)2}2(ZnCp)], 6, [Zn3(CO)6], 7 and [Zn5(CO)10], 8, were built. These polynuclear zinc compounds are isolobally related to simple hydrocarbons (methane, ethane, cyclopropane and cyclopentane). They have been studied by density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM) to compare the nature and topology of the Zn-Zn bond with previous studies. There are bond critical points (BCPs) between each pair of adjacent Zn centers in complexes 1-8 with Zn-Zn distances within the range 2.37-2.50 Å. The nature of the Zn-Zn bond in these complexes can be described as polar rather than pure covalent bonds. Although in a subtle way, the presence of different ligands and zinc oxidation states introduces asymmetry and polarity in the Zn-Zn bond. In addition, the Zn-Zn bond is delocalized in nature in complex 7 whereas it can be described as a localized bond for the remaining zinc complexes here studied.
Collapse
|
2
|
Jiang S, Cai Y, Carpentier A, Del Rosal I, Maron L, Xu X. Synthesis and Reactivity of Triangular Heterometallic Complexes Containing Zn-Zn Bond. Inorg Chem 2022; 61:8083-8089. [PMID: 35533341 DOI: 10.1021/acs.inorgchem.2c00956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This work provides a facile access to a series of triangular [Zn2M] (M = group 10 and 11 metals) clusters. Treatment of Zn-Zn-bonded compounds [LZn-ZnL] (L = CH3C(2,6-iPr2C6H3N)CHC(CH3)(NCH2CH2PR2); R = Ph, iPr) with zero-valent transition-metal reagents selectively afforded the corresponding triangular clusters [Zn2M], where M = Ni(0), Pd(0), and Pt(0). Notably, the isoelectronic triangular clusters [Zn2M]+, where M = Ag(I) and Cu(I), could also be obtained by reactions of [LZn-ZnL] with AgOTf and CuOTf, respectively. The [Zn2Ag]+ complex containing elusive Zn-Ag bonds was investigated by density functional theory analysis, showing a 3c-2e bonding feature in the metallic ring. The electrochemical behaviors of [Zn2M] complexes were examined and revealed the donation of electron density from the Zn-Zn σ-bond to the metal centers. Reaction of the [Zn2Ni] complex with isocyanide gave heterometallic species by coordination of isocyanide to the nickel center, keeping the trimetallic ring core structure intact. In contrast, the Zn-Zn bond was rapidly cleaved upon treatment of the [Zn2Ni] complex with dihydrogen or phenyl acetylene, generating the hydride- or acetylide-bridged heterotrimetallic complex.
Collapse
Affiliation(s)
- Shengjie Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yanping Cai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Ambre Carpentier
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Iker Del Rosal
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
3
|
Miloserdov FM, Pécharman AF, Sotorrios L, Rajabi NA, Lowe JP, Macgregor SA, Mahon MF, Whittlesey MK. Bonding and Reactivity of a Pair of Neutral and Cationic Heterobimetallic RuZn 2 Complexes. Inorg Chem 2021; 60:16256-16265. [PMID: 34661399 PMCID: PMC8730504 DOI: 10.1021/acs.inorgchem.1c02072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 01/15/2023]
Abstract
A combined experimental and computational study of the structure and reactivity of two [RuZn2Me2] complexes, neutral [Ru(PPh3)(Ph2PC6H4)2(ZnMe)2] (2) and cationic [Ru(PPh3)2(Ph2PC6H4)(ZnMe)2][BArF4] ([BArF4] = [B{3,5-(CF3)2C6H3}4]) (3), is presented. Structural and computational analyses indicate these complexes are best formulated as containing discrete ZnMe ligands in which direct Ru-Zn bonding is complemented by weaker Zn···Zn interactions. The latter are stronger in 2, and both complexes exhibit an additional Zn···Caryl interaction with a cyclometalated phosphine ligand, this being stronger in 3. Both 2 and 3 show diverse reactivity under thermolysis and with Lewis bases (PnBu3, PCy3, and IMes). With 3, all three Lewis bases result in the loss of [ZnMe]+. In contrast, 2 undergoes PPh3 substitution with PnBu3, but with IMes, loss of ZnMe2 occurs to form [Ru(PPh3)(C6H4PPh2)(C6H4PPhC6H4Zn(IMes))H] (7). The reaction of 3 with H2 affords the cationic trihydride complex [Ru(PPh3)2(ZnMe)2(H)3][BArF4] (12). Computational analyses indicate that both 12 and 7 feature bridging hydrides that are biased toward Ru over Zn.
Collapse
Affiliation(s)
- Fedor M. Miloserdov
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen 6708, WE, The Netherlands
| | | | - Lia Sotorrios
- Institute
of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Nasir A. Rajabi
- Institute
of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - John P. Lowe
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Stuart A. Macgregor
- Institute
of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Mary F. Mahon
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | | |
Collapse
|
4
|
Li B, Wölper C, Huse K, Schulz S. Intermediate snapshot on the insertion reaction of isocyanates into the Zn-Cp* bond of dizincocene Cp* 2Zn 2. Chem Commun (Camb) 2020; 56:8643-8646. [PMID: 32601630 DOI: 10.1039/d0cc03831h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heteroleptic Zn(i) complexes Cp*Zn-Zn(N(R)C(Cp*)O) (R = Dipp = 2,6-i-Pr2-C6H32, t-Bu 3) with unsymmetrically η4-coordinated Cp* substituents represent snapshots of the insertion reaction of RNCO into the Zn-Cp* bond of Cp*2Zn21. The bonding situation in 2 and 3, which represent the first Zn(i) olefin complexes, was evaluated by computational calculation and further compared to other Zn(i) complexes.
Collapse
Affiliation(s)
- Bin Li
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45117 Essen, Germany.
| | - Christoph Wölper
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45117 Essen, Germany.
| | - Kevin Huse
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45117 Essen, Germany.
| | - Stephan Schulz
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45117 Essen, Germany.
| |
Collapse
|
5
|
Jiang S, Chen M, Xu X. Formation of Zn-Zn and Zn-Pd Bonded Complexes by Reactions of Terminal Zinc Hydrides with Pd(II) Species. Inorg Chem 2019; 58:13213-13220. [PMID: 31502831 DOI: 10.1021/acs.inorgchem.9b02062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Divalent palladium-induced homocoupling of terminal zinc hydrides to zinc-zinc bonded complexes was achieved herein. Reactions of zinc hydrides [LZnH] (L = CH3C(2,6-iPr2C6H3N)CHC(CH3)(N(CH2)nCH2PPh2); 1a: n = 1; 1b: n = 2) with 0.5 equiv of allyl(cyclopentadienyl)palladium(II) afforded heterotrinuclear [Zn2Pd] complexes 3 containing direct Zn-Zn and Zn-Pd bonds, with concomitant elimination of propylene and cyclopentadiene. Complexes 3 were also accessed by the reactions of zinc hydrides 1 with allylpalladium(II) chloride with release of propylene and hydrogen chloride. Treatment of zinc hydrides 1 with 1 equiv of allyl(cyclopentadienyl)palladium(II) gave Zn-Pd bonded complex 5 by elimination of propylene, which can be transformed into heterotrinuclear complex 3 by further reaction with one additional molar equivalent of zinc hydrides. Heterobimetallic Zn-Pd complex 5b was found to be an effective catalyst in the hydrosilylation of benzaldehyde and its derivatives. Reaction of 5b with silane reagent Ph2SiH2 produced [Pd2Si2H2] complex 8 with cleavage of the Pd-Zn bond, which served as an initiating species in the catalytic reaction. Complexes 4b, 5, and 8 in this study were characterized by X-ray diffraction.
Collapse
Affiliation(s)
- Shengjie Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Min Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| |
Collapse
|
6
|
Ayala R, Galindo A. A QTAIM and DFT study of the dizinc bond in non-symmetric [CpZn2Ln] complexes. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Chen M, Jiang S, Maron L, Xu X. Transition metal-induced dehydrogenative coupling of zinc hydrides. Dalton Trans 2019; 48:1931-1935. [DOI: 10.1039/c8dt04651d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal-induced dehydrogenative homocoupling of zinc(ii) hydrides to a zinc–zinc bonded complex has been achieved.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- 215123 Suzhou
| | - Shengjie Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- 215123 Suzhou
| | - Laurent Maron
- LPCNO
- CNRS & INSA
- Université Paul Sabatier
- 31077 Toulouse
- France
| | - Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- 215123 Suzhou
| |
Collapse
|