1
|
Liu X, Li Y, Tan C, Chen Z, Yang H, Wang X. Highly Selective Extraction of U(VI) from Solutions by Metal Organic Framework-Based Nanomaterials through Sorption, Photochemistry, and Electrochemistry Strategies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18696-18712. [PMID: 38079289 DOI: 10.1021/acs.langmuir.3c02739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
With the rapid development of nuclear technology and peaceful utilization of nuclear energy, plentiful U(VI) not only is required to be extracted from solutions for a sustainable nuclear fuel supply but also is inevitably released into the surrounding environment to result in pollution and threaten human health. Thereby, realizing selective extraction of U(VI) from aqueous solutions is crucial for U(VI) pollution control and a sustainable nuclear industry. Metal organic frameworks (MOFs) have gained multidisciplinary attention due to their excellent properties including large specific surface areas, tunable pore structures, easy functionalization, etc. This Review comprehensively summarizes the research progress of MOFs and MOF-based materials on U(VI) removal from aqueous solutions by sorption, photocatalysis, electrocatalysis, membrane separation, etc. The efficient high extraction ability is dependent on the intrinsic properties of MOFs and the techniques used. The removal properties of MOF-based materials as adsorbents, photocatalysts, and electrocatalysts for U(VI) are discussed. Information about the interaction mechanisms between U(VI) and MOF-based materials are analyzed in-depth, including experiments, theoretical calculations, and advanced spectroscopy analysis. The removal properties for U(VI) of various MOF-based materials are assessed through different techniques. Finally, a summary and perspective on the direction and challenges of MOF-based materials and various pollutant removal technologies are proposed to provide some significant information on designing and fabricating MOF-based materials for environmental pollution management.
Collapse
Affiliation(s)
- Xiaolu Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Yang Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Chunhong Tan
- Huan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang, Hunan 421001, P. R. China
| | - Zhongshan Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Hui Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| |
Collapse
|
2
|
Carpenter SH, Wolford NJ, Billow BS, Fetrow TV, Cajiao N, Radović A, Janicke MT, Neidig ML, Tondreau AM. Homoleptic Uranium-Bis(acyl)phosphide Complexes. Inorg Chem 2022; 61:12508-12517. [PMID: 35905438 DOI: 10.1021/acs.inorgchem.2c00639] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first uranium bis(acyl)phosphide (BAP) complexes were synthesized from the reaction between sodium bis(mesitoyl)phosphide (Na(mesBAP)) or sodium bis(2,4,6-triisopropylbenzoyl)phosphide (Na(trippBAP)) and UI3(1,4-dioxane)1.5. Thermally stable, homoleptic BAP complexes were characterized by single-crystal X-ray diffraction and electron paramagnetic resonance (EPR) spectroscopy, when appropriate, for the elucidation of the electronic structure and bonding of these complexes. EPR spectroscopy revealed that the BAP ligands on the uranium center retain a significant amount of electron density. The EPR spectrum of the trivalent U(trippBAP)3 has a rhombic signal near g = 2 (g1 = 2.03; g2 = 2.01; and g3 = 1.98) that is consistent with the EPR-observed unpaired electron being located in a molecular orbital that appears ligand-derived. However, upon warming the complex to room temperature, no resonance was observed, indicating the presence of uranium character.
Collapse
Affiliation(s)
| | - Nikki J Wolford
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Brennan S Billow
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Taylor V Fetrow
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nathalia Cajiao
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Aleksa Radović
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Michael T Janicke
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Michael L Neidig
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Aaron M Tondreau
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
3
|
Sun X, Neidlinger LR, Bossert LR, Kolling DR. Inner-Sphere and Outer-Sphere Charge-Transfer Quenching of the Uranyl UO22+(VI) Luminescence, and Kinetics for the Tertiary and Secondary Alcohols Activated Uranyl Emission. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Sun X, Kolling DR, Smythers AL, Deal RA. Investigations of the photochemical charge-transfer reduction of uranyl UO22+(VI) to uranyl UO2+(V) by benzene-1,4-diol (1,4-C6H4(OH)2) and oxalate (C2O42−) by UV–Vis, electron paramagnetic resonance, and luminescence spectroscopies. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Li S, Hu Y, Shen Z, Cai Y, Ji Z, Tan X, Liu Z, Zhao G, Hu S, Wang X. Rapid and selective uranium extraction from aqueous solution under visible light in the absence of solid photocatalyst. Sci China Chem 2021; 64:1323-1331. [DOI: doi.org/10.1007/s11426-021-9987-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/18/2021] [Indexed: 06/25/2023]
|
6
|
Li S, Hu Y, Shen Z, Cai Y, Ji Z, Tan X, Liu Z, Zhao G, Hu S, Wang X. Rapid and selective uranium extraction from aqueous solution under visible light in the absence of solid photocatalyst. Sci China Chem 2021. [DOI: 10.1007/s11426-021-9987-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Zhang X, Li P, Krzyaniak M, Knapp J, Wasielewski MR, Farha OK. Stabilization of Photocatalytically Active Uranyl Species in a Uranyl-Organic Framework for Heterogeneous Alkane Fluorination Driven by Visible Light. Inorg Chem 2020; 59:16795-16798. [PMID: 32484338 DOI: 10.1021/acs.inorgchem.0c00850] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
When photoactivated, the uranyl ion is a powerful oxidant capable of abstracting hydrogen atoms from nonactivated C-H bonds. However, the highly reactive singly reduced [UVO2]+ intermediate is unstable with respect to disproportionation to the uranyl dication and insoluble tetravalent uranium phases, which limits the usage of uranyl ions as robust photocatalysts. Herein, we demonstrate that photoactivated uranyl ions can be stabilized by immobilizing and separating them spatially in a uranyl-organic framework heterogeneous catalyst, NU-1301. The visible-light-photoactivated uranyl ions in NU-1301 exhibited longer-lived U(V) and radicals than those in homogeneous counterparts, as evidenced by X-ray photoelectron spectroscopy and time-dependent electron paramagnetic resonance, leading to higher turnovers and enhanced stability for the fluorination of nonactivated alkanes.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Peng Li
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Matthew Krzyaniak
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | | | - Michael R Wasielewski
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|