1
|
Strelnik ID, Dayanova IR, Faizullin BA, Mustafina AR, Gerasimova TP, Kolesnikov IE, Islamov DR, Litvinov IA, Voloshina AD, Sapunova AS, Gubaidullin AT, Musina EI, Karasik AA. Linkage of the Dinuclear Gold(I) Complex Luminescence and Origin of Endocyclic Amino Group of Cyclic P 2N 2-Bridging Ligands. Inorg Chem 2023; 62:19474-19487. [PMID: 37983813 DOI: 10.1021/acs.inorgchem.3c02437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Gold(I) complexes of LAu2Cl2 composition based on P2N2 ligands, namely 1,5-diaza-3,7-diphosphacyclooctanes, containing ethylpyridyl substituents at the phosphorus atoms and sp2- or sp3-hybridized endocyclic nitrogen atoms were synthesized. The SCXRD analysis indicated the strong impact of the geometry of the nitrogen atom on the structure and conformational flexibility of the complexes. The N-aryl substituted ligand with the planar endocyclic nitrogen atom provides higher flexibility of the complex and an ability to bind the solvent molecules in the "host-guest" mode, whereas that kind of behavior is forbidden for the complex with an N-alkyl substituted ligand with a pyramidal nitrogen atom. The substituents at nitrogen atoms also control the origin of the emission, which is phosphorescence for the N-aryl substituted complex and fluorescence for the N-alkylaryl substituted complex. The phosphorescent gold(I) complex displays high cytotoxicity without selectivity toward the m-HeLa and normal cells, but the core-shell nanoparticles formed on the base of the complex demonstrate reduced cytotoxicity. The luminescence of the NPs allows tracking the complexes in the cell samples.
Collapse
Affiliation(s)
- Igor D Strelnik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia
| | - Irina R Dayanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia
| | - Bulat A Faizullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia
| | - Asiya R Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia
| | - Tatiana P Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia
| | - Ilya E Kolesnikov
- Center for Optical and Laser Materials Research, St. Petersburg University, 5 Ulianovskaya Street, Saint Petersburg 198504, Russia
| | - Daut R Islamov
- Laboratory for Structural Analysis of Biomacromolecules, Kazan Scientific Center of the Russian Academy of Sciences, 31 Kremlevskaya Street, Kazan 420008, Russia
| | - Igor A Litvinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia
| | - Anastasiia S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia
| | - Aidar T Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia
| | - Elvira I Musina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia
| | - Andrey A Karasik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russia
| |
Collapse
|
2
|
Faizullin BA, Elistratova JG, Strelnik ID, Akhmadgaleev KD, Gubaidullin AT, Kholin KV, Nizameev IR, Babaev VM, Amerhanova SK, Voloshina AD, Gerasimova TP, Karasik AA, Sinyashin OG, Mustafina AR. Luminescent Water-Dispersible Nanoparticles Engineered from Copper(I) Halide Cluster Core and P,N-Ligand with an Optimal Balance between Stability and ROS Generation. INORGANICS 2023. [DOI: 10.3390/inorganics11040141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
The present work introduces the solvent exchange procedure as a route for conversion of the Cu4I4L2 complex, where the Cu4I4 cluster core is coordinated with two P,N-ligands (L), into an aqueous colloid. The analysis of both colloidal and supernatant phases revealed some losses in CuI going from the initial Cu4I4L2 complex to Cu2I2L3-based nanoparticles. The comparative analysis of IR, 31P NMR spectroscopy, ESI mass-spectrometry and luminescence data argued for a contribution of the “butterfly”-like structures of the Cu2I2 cluster core to Cu2I2L3-based nanoparticles, although the amorphous nature of the latter restricted structure evaluation from the PXRD data. The green luminescence of the colloids revealed their chemical stability under pH variations in the solutions of some amino acids and peptides, and to specify the temperature and concentration conditions triggering the oxidative degradation of the nanoparticles. The spin trap-facilitated ESR study indicated that the oxidative transformations were followed by the generation of reactive oxygen species (ROS). The physiological temperature level (310 K) enhanced the ROS generation by nanoparticles, but the ROS level was suppressed in the solution of GSH at pH = 7.0. The cytotoxicity of nanoparticles was evaluated in the M-HeLa cell line and is discussed in correlation with their cell internalization and intracellular oxidative transformations.
Collapse
|
3
|
Strelnik I, Shamsieva A, Akhmadgaleev K, Gerasimova T, Dayanova I, Kolesnikov I, Fayzullin R, Islamov D, Musina E, Karasik A, Sinyashin O. Emission and Luminescent Vapochromism Control of Octahedral Cu 4 I 4 Complexes by Conformationally Restricted P,N Ligands. Chemistry 2023; 29:e202202864. [PMID: 36420785 DOI: 10.1002/chem.202202864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/25/2022]
Abstract
A conformationally restricted P,N-ligand capable of the design of polynuclear copper(I) complexes was synthesized via the reaction of primary pyridylphosphine, paraformaldehyde, and benzhydrylamine. The reaction of the ligand with copper(I) iodide leads to the tetranuclear copper(I) complex with the octahedral type of copper-iodide core. Different orientation of coordination bonds of the ligands relative to the P,N2 -heterocyclic fragments and to the Cu4 I4 cores leads to the existence of two types of conformers of the complex with "compact" or "stretched" geometry of the Cu4 I4 cluster. This lability of the complex allowed for obtaining two crystalline phases displaying green or red luminescence. The TDDFT computations along with XRD structural analysis gave a strong interpretation of the green emission belonging to the "compact" form of the complex and belonging of the red emission to the "stretched" form. Moreover, both crystalline phases demonstrate the strong vapochromic responses of luminescence on the vapors of wide range of solvents.
Collapse
Affiliation(s)
- Igor Strelnik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088, Kazan, Russian Federation
| | - Aliia Shamsieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088, Kazan, Russian Federation
| | - Kamil Akhmadgaleev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088, Kazan, Russian Federation
| | - Tatiana Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088, Kazan, Russian Federation
| | - Irina Dayanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088, Kazan, Russian Federation
| | - Ilya Kolesnikov
- Center for Optical and Laser Materials Research, Saint Petersburg State University, Sankt-Peterburg, 5 Ulianovskaya Street, 198504 Saint Petersburg, Russian Federation
| | - Robert Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088, Kazan, Russian Federation
| | - Daut Islamov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088, Kazan, Russian Federation
| | - Elvira Musina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088, Kazan, Russian Federation
| | - Andrey Karasik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088, Kazan, Russian Federation
| | - Oleg Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088, Kazan, Russian Federation
| |
Collapse
|
4
|
Aurophilic Interactions of Dimeric Bisphosphine Gold(I) Complexes Pre-Organized by the Structure of the 1,5-Diaza-3,7-Diphosphacyclooctanes. INORGANICS 2022. [DOI: 10.3390/inorganics10120224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The dimeric gold(I) chloride and gold(I) iodide complexes ([L2Au]Cl2 and L2AuI2) on the scaffold of the cyclic bisphosphine, namely 1,5-diaza-3,7-diphosphacyclooctane containing α-phenylbenzyl (benzhydryl) substituents at the nitrogen atoms, were synthesized. The obtained complexes were isolated as white crystalline powders. The single crystal XRD of the obtained complexes revealed the strong aurophilic interactions between two gold(I) atoms with the Au…Au distance values of 2.9977(6) and 3.1680(5) Å. The comparison of the gold complexes, based on the N,N-diaryl- and N,N-dibenzhydryl substituted 1,5-diaza-3,7-diphosphacyclooctanes, allowed to reveal the strong impact of the initial heterocycle conformation on the realization of the aurophilic interactions, where the geometry of N,N-dibenzhydryl substituted 1,5-diaza-3,7-diphosphacyclooctane, is pre-organized for the intramolecular aurophilic interactions of the complexes. The obtained complexes exhibit a bluish-green phosphorescence (λem 505 (-Cl) and 530(-I)) in the solid state at room temperature, originated by the metal-halide centered transitions, which was confirmed by the TDDFT calculations. It was found that the aurophilic interactions are realized in the ground and in the triplet excited states of the complexes. The slighter change of the geometry of the N,N-dibenzhydryl substituted gold(I) iodide complexes, under the transition from the ground state to the excited state, in comparison with their N,N-diaryl substituted analogues, results in the reduced values of the Stokes shift of luminescence (ca. 150 nm vs. 175 nm).
Collapse
|
5
|
Li Y, Wu Y, Wu J, Lun W, Zeng H, Fan X. A near-infrared phosphorescent iridium(iii) complex for fast and time-resolved detection of cysteine and homocysteine. Analyst 2020; 145:2238-2244. [PMID: 32077868 DOI: 10.1039/c9an02469g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Thiol-containing amino acids, cysteine (Cys) and homocysteine (Hcy), play crucial roles in the biosystem; their abnormal contents in the cells are linked to many diseases. Herein, we designed and synthesized a novel near-infrared (NIR) phosphorescent iridium(iii) complex-based probe (FNO1) that can detect Cys and Hcy in real-time in the biosystem. Due to the advantages of the iridium complex, the FNO1 probe had excellent chemical stability and photostability, high luminescence efficiency, and long luminescence lifetime. In addition, the probe showed a fast response, high sensitivity, and low cytotoxicity. As verified by high resolution mass spectra (HR-MS) and density functional theory (DFT) calculations, the detection was achieved through the addition of the α,β-unsaturated ketone group in FNO1 by the nucleophilic thiol group in Cys and Hcy. Through time-resolved emission spectroscopy (TRES) and in the presence of a strongly fluorescent dye rhodamine B, the FNO1 probe could detect Cys and Hcy due to its long luminescence lifetime (260/197 ns). Finally, owing to its NIR-emitting properties, the FNO1 probe was successfully applied in the imaging of Cys and Hcy in living cells, zebrafish, and mice.
Collapse
Affiliation(s)
- Yuanyan Li
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, P. R. China. and School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Yongquan Wu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Jie Wu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Weican Lun
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Hong Zeng
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Xiaolin Fan
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, P. R. China. and School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| |
Collapse
|
6
|
Shamsieva AV, Musina EI, Gerasimova TP, Strelnik ID, Strelnik AG, Kolesnikov IE, Kalinichev AA, Islamov DR, Samigullina AI, Lönnecke P, Katsyuba SA, Hey-Hawkins E, Karasik AA, Sinyashin OG. Triple-bridged helical binuclear copper(i) complexes: Head-to-head and head-to-tail isomerism and the solid-state luminescence. Dalton Trans 2020; 49:11997-12008. [PMID: 32812965 DOI: 10.1039/d0dt01843k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A family of helical dinuclear copper(i) pyridylphospholane complexes [Cu2L3X]X (X = BF4-, Cl- and Br-) was prepared. The family includes the first examples of this type of complex based on copper(i) chloride and copper(i) bromide. The two isomers typical of this class of compounds, namely head-to-head and head-to-tail complexes, were studied in solution by spectroscopic and optical methods, and in the solid state by X-ray diffraction. Furthermore, the solid-state luminescence of the complexes at different temperatures was studied, and the results were interpreted using quantum-chemical calculations. It was shown that the luminescence of the complexes is attributed to the 3(M + X)LCT transitions.
Collapse
Affiliation(s)
- Aliia V Shamsieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russian Federation.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Elistratova J, Faizullin B, Strelnik I, Gerasimova T, Khairullin R, Sapunova A, Voloshina A, Mukhametzyanov T, Musina E, Karasik A, Mustafina A. Impact of oppositely charged shell and cores on interaction of core-shell colloids with differently charged proteins as a route for tuning of the colloids cytotoxicity. Colloids Surf B Biointerfaces 2020; 196:111306. [PMID: 32810768 DOI: 10.1016/j.colsurfb.2020.111306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/16/2020] [Accepted: 08/02/2020] [Indexed: 10/23/2022]
Abstract
The present work represents interactions between the core-shell nanoparticles and different proteins, exemplified by lysozyme (LSZ), pepsin, bovine serum albumin (BSA), thioredoxin (TRX) and yellow fluorescent protein (YFP). The core-shell morphology derives from the non-covalent deposition of polyethyleneimine (PEI) onto nanoprecipitated luminescent complex (AuCl)2L (L is cyclic PNNP ligand). Analysis of the data obtained by DLS, CD spectroscopy, luminescence derived from both (AuCl)2L and YFP reveal the electrostatically driven interaction of negatively charged proteins with the shell of PEI-(AuCl)2L. The fluorescence of YFP enables to reveal the inclusion of the protein molecules into the shell. The lack of any luminescent response of PEI-(AuCl)2L on TRX conforms its electrostatically driven interactions with the shell which, in turn, excludes a binding of the exposed thiol moieties with (AuCl)2L. The negatively charged surface of pepsin provides the greatest recharging of the PEI-based shell versus the other proteins, which is followed by the enhanced luminescence of (AuCl)2L. The significant effect of PEI-(AuCl)2L on the CD spectra of LSZ followed by the decreased intensity of (AuCl)2L-based luminescence points to specific interaction mode of PEI-(AuCl)2L with LSZ. The flow cytometry and fluorescent microscopy measurements revealed efficient internalization of PEI-(AuCl)2L into the Wi-38 cell samples resulting in the efficient staining of all cell organelles. The concentration dependent cytotoxicity of PEI-(AuCl)2L is detectably enhanced by LSZ, which is correlated with its interaction mode with the nanoparticles.
Collapse
Affiliation(s)
- Julia Elistratova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia.
| | - Bulat Faizullin
- Kazan (Volga Region) Federal University, Kremlyovskaya str., 18, 420008, Kazan, Russia
| | - Igor Strelnik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
| | - Tatiana Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
| | - Rafil Khairullin
- Kazan (Volga Region) Federal University, Kremlyovskaya str., 18, 420008, Kazan, Russia
| | - Anastasiia Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
| | - Timur Mukhametzyanov
- Kazan (Volga Region) Federal University, Kremlyovskaya str., 18, 420008, Kazan, Russia
| | - Elvira Musina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
| | - Andrey Karasik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
| | - Asiya Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088, Kazan, Russia
| |
Collapse
|
8
|
Water dispersible supramolecular assemblies built from luminescent hexarhenium clusters and silver(I) complex with pyridine-2-ylphospholane for sensorics. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
2-(Dibutylamino)ethyl acrylate as a highly efficient co-reactant of Ru(bpy)32+ electrochemiluminescence for selective detection of cysteine. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|