1
|
Klemt I, Varzatskii O, Selin R, Vakarov S, Kovalska V, Bila G, Bilyy R, Voloshin Y, Cuartero IC, Hidalgo A, Frey B, Becker I, Friedrich B, Tietze R, Friedrich RP, Alexiou C, Ursu EL, Rotaru A, Solymosi I, Pérez-Ojeda ME, Mokhir A. 3D-Shaped Binders of Unfolded Proteins Inducing Cancer Cell-Specific Endoplasmic Reticulum Stress In Vitro and In Vivo. J Am Chem Soc 2023; 145:22252-22264. [PMID: 37773090 DOI: 10.1021/jacs.3c08827] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The amount of unfolded proteins is increased in cancer cells, leading to endoplasmic reticulum (ER) stress. Therefore, cancer cells are sensitive to drugs capable of further enhancing ER stress. Examples of such drugs include the clinically approved proteosome inhibitors bortezomib and carfilzomib. Unfortunately, the known ER stress inducers exhibit dose-limiting side effects that justify the search for better, more cancer-specific drugs of this type. Herein, we report on FeC 2, which binds to unfolded proteins prevents their further processing, thereby leading to ER stress and ROS increase in cancer cells, but not in normal cells. FeC 2 exhibits low micromolar toxicity toward human acute promyelocytic leukemia HL-60, Burkitt's lymphoma BL-2, T-cell leukemia Jurkat, ovarian carcinoma A2780, lung cancer SK-MES-1, and murine lung cancer LLC1 cells. Due to the cancer-specific mode of action, 2 is not toxic in vivo up to the dose of 147 mg/kg, does not affect normal blood and bone marrow cells at the therapeutically active dose, but strongly suppresses both primary tumor growth (confirmed in Nemeth-Kellner lymphoma and LLC1 lung cancer models of murine tumor) and spreading of metastases (LLC1).
Collapse
Affiliation(s)
- Insa Klemt
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Oleg Varzatskii
- Princeton Biomolecular Research Laboratories, 26A Saperne Pole Street, 01042 Kyiv, Ukraine
- V.I. Vernadsky Institute of General and Inorganic Chemistry, NASU, 32/34 Palladin Av., 03142 Kyiv, Ukraine
| | - Roman Selin
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Serhii Vakarov
- Princeton Biomolecular Research Laboratories, 26A Saperne Pole Street, 01042 Kyiv, Ukraine
- V.I. Vernadsky Institute of General and Inorganic Chemistry, NASU, 32/34 Palladin Av., 03142 Kyiv, Ukraine
| | - Vladyslava Kovalska
- Princeton Biomolecular Research Laboratories, 26A Saperne Pole Street, 01042 Kyiv, Ukraine
- Institute of Molecular Biology and Genetics, NASU, 150 Zabolotnogo Street, 03143 Kyiv, Ukraine
| | - Galyna Bila
- Department of Histology, Cytology and Embryology, Danylo Halytsky Lviv National Medical University, Pekarska Street 69, 79010 Lviv, Ukraine
- Lectinotest R&D, Mechanichna Street 2, 79024 Lviv, Ukraine
| | - Rostyslav Bilyy
- Department of Histology, Cytology and Embryology, Danylo Halytsky Lviv National Medical University, Pekarska Street 69, 79010 Lviv, Ukraine
- Lectinotest R&D, Mechanichna Street 2, 79024 Lviv, Ukraine
| | - Yan Voloshin
- Nesmeyanov Institute of Organoelement Compounds, RAS, 28 Vavilova Street, 119334 Moscow, Russia
| | - Itziar Cossío Cuartero
- Program of Cardiovascular Regeneration, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C. Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Andrés Hidalgo
- Program of Cardiovascular Regeneration, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C. Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Benjamin Frey
- Department of Radiation Oncology, Translational Radiobiology, Universitaetsklinikum Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Glueckstrasse 4A, 91054 Erlangen, Germany
| | - Ina Becker
- Department of Radiation Oncology, Translational Radiobiology, Universitaetsklinikum Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Glueckstrasse 4A, 91054 Erlangen, Germany
| | - Bernhard Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), University Hospital, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Glückstraße 10a, 91054 Erlangen, Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), University Hospital, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Glückstraße 10a, 91054 Erlangen, Germany
| | - Ralf P Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), University Hospital, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Glückstraße 10a, 91054 Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), University Hospital, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Glückstraße 10a, 91054 Erlangen, Germany
| | - Elena-Laura Ursu
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Alexandru Rotaru
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Iris Solymosi
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - M Eugenia Pérez-Ojeda
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Andriy Mokhir
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| |
Collapse
|
2
|
Chuprin AS, Pavlov AA, Vologzhanina AV, Dorovatovskii PV, Makarenkov AV, Ol'shevskaya VA, Dudkin SV, Voloshin YZ. Multistep synthesis and X-ray structures of carboxyl-terminated hybrid iron(II) phthalocyaninatoclathrochelates and their postsynthetic transformation into polytopic carboranyl-containing derivatives. Dalton Trans 2023; 52:3884-3895. [PMID: 36877091 DOI: 10.1039/d3dt00076a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A multistep general synthetic strategy towards polytopic carboranyl-containing (semi)clathrochelate metal complexes, based on the template synthesis, transmetallation, amide condensation and 1,3-dipolar cycloaddition reactions, is developed. Their mono(semi)clathrochelate precursors with a single reactive group were obtained using a transmetallation of the triethylantimony-capped macrobicyclic precursor. The thus obtained carboxyl-terminated iron(II) semiclathrochelate underwent a macrobicyclization with zirconium(IV) phthalocyaninate to form the corresponding phthalocyaninatoclathrochelate. The direct one-pot template condensation of the suitable chelating and cross-linking ligand synthons on the Fe2+ ion as a matrix was also used for its preparation. Further amide condensation of the aforementioned semiclathrochelate and hybrid complexes with propargylamine in the presence of carbonyldiimidazole gave the (pseudo)cage derivatives with a terminal CC bond. Their "click" reaction with an appropriate carboranylmethyl azide afforded the ditopic carboranosemiclathrochelates and the tritopic carboranyl-containing phthalocyaninatoclathrochelates with a flexible spacer fragment between their polyhedral entities. The obtained new complexes were characterized using elemental analysis, MALDI-TOF mass spectrometry, multinuclear NMR, and UV-vis spectroscopy, and by single crystal X-ray diffraction experiments. Their FeN6-coordination polyhedra show a truncated trigonal-pyramidal geometry, while the cross-linking heptacoordinate Zr4+ or Hf4+ cations in the hybrid compounds form the MIVN4O3-coordination polyhedra with the geometry of a capped trigonal prism.
Collapse
Affiliation(s)
- Alexander S Chuprin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Alexander A Pavlov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
- BMSTU Center of National Technological Initiative "Digital Material Science: New Material and Substances", Bauman Moscow State Technical University, 2nd Baumanskaya st. 5, 105005, Moscow, Russia
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Pavel V Dorovatovskii
- National Research Center Kurchatov Institute, 1 Kurchatova pl., 123098, Moscow, Russia
| | - Anton V Makarenkov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Valentina A Ol'shevskaya
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Semyon V Dudkin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Yan Z Voloshin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| |
Collapse
|
3
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Selin RO, Klemt I, Chernii VY, Losytskyy MY, Chernii S, Mular A, Gumienna-Kontecka E, Kovalska VB, Voloshin YZ, Vologzhanina AV, Dorovatovskii PV, Mokhir A. Synthesis and spectral characterization of the first fluorescein-tagged iron(ii) clathrochelates, their supramolecular interactions with globular proteins, and cellular uptake. RSC Adv 2021; 11:8163-8177. [PMID: 35423299 PMCID: PMC8695075 DOI: 10.1039/d0ra10502c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/02/2021] [Indexed: 01/29/2023] Open
Abstract
A fluorescein-tagged iron(ii) cage complex was obtained in a moderate total yield using a two-step synthetic procedure starting from its propargylamine-containing clathrochelate precursor. An 11-fold decrease in fluorescence quantum yield is observed in passing from the given fluorescein-based dye to its clathrochelate derivative. An excitation energy transfer from the terminal fluorescent group of the macrobicyclic molecule to its quasiaromatic highly π-conjugated clathrochelate framework can explain this effect. The kinetics of the hydrolysis of the acetyl groups of acetylated fluorescein azide and its clathrochelate derivative in the presence of one equivalent of BSA evidenced no strong supramolecular host-guest interactions between BSA and the tested compounds. Study of a chemical stability of the deacetylated iron(ii) clathrochelate suggested the formation of a supramolecular 1 : 1 BSA-clathrochelate assembly. Moreover, an addition of BSA or HSA to its solution caused the appearance of strong clathrochelate-based ICD outputs. The fluorescence emission anisotropy studies also evidenced the supramolecular binding of the fluorescein-tagged iron(ii) clathrochelate to the BSA macromolecule, leading to a high increase in this type of anisotropy. Subcellular uptake of the fluorescein-tagged molecules was visualized using fluorescence microscopy and showed its distribution to be mainly in the cytosol without entering the nucleus or accumulating in any other organelle. An X-rayed crystal of the above propargylamide macrobicyclic precursor with a reactive terminal C[triple bond, length as m-dash]C bond contains the clathrochelate molecules of two types, A and B. The encapsulated iron(ii) ion in these molecules is situated in the center of its FeN6-coordination polyhedron, the geometry of which is intermediate between a trigonal prism (TP) and a trigonal antiprism (TAP). The Fe-N distances vary from 1.8754(6) to 1.9286(4) Å and the heights h of their distorted TP-TAP polyhedra are very similar (2.30 and 2.31 Å); their values of φ are equal to 25.3 and 26.6°. In this crystal, the molecules of types A and B participate in different types of hydrogen bonding, giving H-bonded clathrochelate tetramers through their carboxylic and amide groups, respectively; these tetramers are connected to H-bonded chains.
Collapse
Affiliation(s)
- Roman O Selin
- Vernadskii Institute of General and Inorganic Chemistry NASU 32/34 Palladin Prosp. 03080 Kiev Ukraine
| | - Insa Klemt
- Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nuremberg Nikolaus-Fiebiger-Straße 10 91058 Erlangen Germany
| | - Viktor Ya Chernii
- Vernadskii Institute of General and Inorganic Chemistry NASU 32/34 Palladin Prosp. 03080 Kiev Ukraine
| | - Mykhaylo Yu Losytskyy
- Institute of Molecular Biology and Genetics, NASU 150 Zabolotnogo St. 03143 Kyiv Ukraine
| | - Svitlana Chernii
- Institute of Molecular Biology and Genetics, NASU 150 Zabolotnogo St. 03143 Kyiv Ukraine
| | - Andrzej Mular
- Faculty of Chemistry, University of Wroclaw 14 F. Joliot-Curie St. 50-383 Wroclaw Poland
| | | | - Vladyslava B Kovalska
- Institute of Molecular Biology and Genetics, NASU 150 Zabolotnogo St. 03143 Kyiv Ukraine
| | - Yan Z Voloshin
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences 31 Leninsky Prosp. 119991 Moscow Russia
- Nesmeyanov Institute of the Organoelement Compounds of the Russian Academy of Sciences 28 Vavilova St. 119991 Moscow Russia
| | - Anna V Vologzhanina
- Nesmeyanov Institute of the Organoelement Compounds of the Russian Academy of Sciences 28 Vavilova St. 119991 Moscow Russia
| | | | - Andriy Mokhir
- Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nuremberg Nikolaus-Fiebiger-Straße 10 91058 Erlangen Germany
| |
Collapse
|