1
|
Rampazzo R, Vavasori A, Ronchin L, Riello P, Marchiori M, Saorin G, Beghetto V. Enhanced Antibacterial Activity of Vancomycin Loaded on Functionalized Polyketones. Polymers (Basel) 2024; 16:1890. [PMID: 39000745 PMCID: PMC11244503 DOI: 10.3390/polym16131890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
Today, polymeric drug delivery systems (DDS) appear as an interesting solution against bacterial resistance, having great advantages such as low toxicity, biocompatibility, and biodegradability. In this work, two polyketones (PK) have been post-functionalized with sodium taurinate (PKT) or potassium sulfanilate (PKSK) and employed as carriers for Vancomycin against bacterial infections. Modified PKs were easily prepared by the Paal-Knorr reaction and loaded with Vancomycin at a variable pH. All polymers were characterized by FT-IR, DSC, TGA, SEM, and elemental analysis. Antimicrobial activity was tested against Gram-positive Staphylococcus aureus ATCC 25923 and correlated to the different pHs used for its loading (between 2.3 and 8.8). In particular, the minimum inhibitory concentrations achieved with PKT and PKSK loaded with Vancomycin were similar, at 0.23 μg/mL and 0.24 μg/mL, respectively, i.e., six times lower than that with Vancomycin alone. The use of post-functionalized aliphatic polyketones has thus been demonstrated to be a promising way to obtain very efficient polymeric DDS.
Collapse
Affiliation(s)
- Rachele Rampazzo
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
- Department of Architecture and Industrial Design, University of Campania “Luigi Vanvitelli”, 81031 Aversa, Italy
| | - Andrea Vavasori
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
| | - Lucio Ronchin
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
| | - Pietro Riello
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
| | - Martina Marchiori
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
| | - Gloria Saorin
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
| | - Valentina Beghetto
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino5 155, 30172 Venice, Italy
- Crossing S.r.l., Viale della Repubblica 193/b, 31100 Treviso, Italy
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi (CIRCC), Via C. Ulpiani 27, 701268 Bari, Italy
| |
Collapse
|
2
|
Paganelli S, Brugnera E, Di Michele A, Facchin M, Beghetto V. Chitosan as a Bio-Based Ligand for the Production of Hydrogenation Catalysts. Molecules 2024; 29:2083. [PMID: 38731574 PMCID: PMC11085195 DOI: 10.3390/molecules29092083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Bio-based polymers are attracting increasing interest as alternatives to harmful and environmentally concerning non-biodegradable fossil-based products. In particular, bio-based polymers may be employed as ligands for the preparation of metal nanoparticles (M(0)NPs). In this study, chitosan (CS) was used for the stabilization of Ru(0) and Rh(0) metal nanoparticles (MNPs), prepared by simply mixing RhCl3 × 3H2O or RuCl3 with an aqueous solution of CS, followed by NaBH4 reduction. The formation of M(0)NPs-CS was confirmed by Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Analysis (EDX), Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD). Their size was estimated to be below 40 nm for Rh(0)-CS and 10nm for Ru(0)-CS by SEM analysis. M(0)NPs-CS were employed for the hydrogenation of (E)-cinnamic aldehyde and levulinic acid. Easy recovery by liquid-liquid extraction made it possible to separate the catalyst from the reaction products. Recycling experiments demonstrated that M(0)NPs-CS were highly efficient up to four times in the best hydrogenation conditions. The data found in this study show that CS is an excellent ligand for the stabilization of Rh(0) and Ru(0) nanoparticles, allowing the production of some of the most efficient, selective and recyclable hydrogenation catalysts known in the literature.
Collapse
Affiliation(s)
- Stefano Paganelli
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; (E.B.); (M.F.)
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi (CIRCC), Via C. Ulpiani 27, 70126 Bari, Italy
| | - Eleonora Brugnera
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; (E.B.); (M.F.)
| | - Alessandro Di Michele
- Dipartimento Fisica e Geologia, Università degli Studi di Perugia, Via Pascoli, 06123 Perugia, Italy;
| | - Manuela Facchin
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; (E.B.); (M.F.)
| | - Valentina Beghetto
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; (E.B.); (M.F.)
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi (CIRCC), Via C. Ulpiani 27, 70126 Bari, Italy
- Crossing S.R.L., Viale della Repubblica 193/b, 31100 Treviso, Italy
| |
Collapse
|
3
|
Bardella N, Facchin M, Fabris E, Baldan M, Beghetto V. Waste Cooking Oil as Eco-Friendly Rejuvenator for Reclaimed Asphalt Pavement. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1477. [PMID: 38611991 PMCID: PMC11012562 DOI: 10.3390/ma17071477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
Over 50 MioT of Waste Cooking Oil (WCO) was collected worldwide in 2020 from domestic and industrial activities, constituting a potential hazard for both water and land environments, and requiring appropriate disposal management strategies. In line with the principles of circular economy and eco-design, in this paper an innovative methodology for the valorisation of WCO as a rejuvenating agent for bitumen 50/70 coming from Reclaimed Asphalt Pavement (RAP) is reported. In particular, WCO or hydrolysed WCO (HWCO) was modified by transesterification or amidation reactions to achieve various WCO esters and amides. All samples were characterised by nuclear magnetic resonance, melting, and boiling point. Since rejuvenating agents for RAP Cold Mix Asphalt require a melting point ≤0 °C, only WCO esters could further be tested. Efficiency of WCO esters was assessed by means of the Asphaltenes Dispersant Test and the Heithaus Parameter. In particular, bitumen blends containing 25 wt% of WCO modified with 2-phenylethyl alcohol, showed high dispersing capacity in n-heptane even after a week, compared to bitumen alone (1 h). Additionally, the Heithaus Parameter of this bitumen blend was almost three times higher than bitumen alone, further demonstrating beneficial effects deriving from the use of WCO esters as rejuvenating agents.
Collapse
Affiliation(s)
- Noemi Bardella
- Crossing S.r.l., Viale della Repubblica 193/b, 31100 Treviso, Italy;
| | - Manuela Facchin
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino 155, 30172 Venice, Italy (M.B.)
| | - Eleonora Fabris
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino 155, 30172 Venice, Italy (M.B.)
| | - Matteo Baldan
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino 155, 30172 Venice, Italy (M.B.)
| | - Valentina Beghetto
- Crossing S.r.l., Viale della Repubblica 193/b, 31100 Treviso, Italy;
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino 155, 30172 Venice, Italy (M.B.)
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi (CIRCC), Via C. Ulpiani 27, 70126 Bari, Italy
| |
Collapse
|
4
|
Facchin M, Gatto V, Samiolo R, Conca S, Santandrea D, Beghetto V. May 1,3,5-Triazine derivatives be the future of leather tanning? A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123472. [PMID: 38320686 DOI: 10.1016/j.envpol.2024.123472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/03/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
Leather is produced by a multi-step process among which the tanning phase is the most relevant, transforming animal skin collagen into a stable, non-putrescible material used to produce a variety of different goods, for the footwear, automotive, garments, and sports industry. Most of the leather produced today is tanned with chromium (III) salts or alternatively with aldehydes or synthetic tannins, generating high environmental concern. Over the years, high exhaustion tanning systems have been developed to reduce the environmental impact of chromium salts, which nevertheless do not avoid the use of metals. Chrome-free alternatives such as aldehydes and phenol based synthetic tannins, are suffering from Reach restrictions due to their toxicity. Thus, the need for environmentally benign and economically sustainable tanning agents is increasingly urgent. In this review, the synthesis, use and tanning mechanism of a new class of tanning agents, 1,3,5-triazines derivatives, have been reported together with organoleptic, physical mechanical characteristics of tanned leather produced. Additionally environmental performance and economic data available for 1,3,5-triazines have been compared with those of a standard basic chromium sulphate tanning process, evidencing the high potentiality for sustainable, metal, aldehyde, and phenol free leather manufacturing.
Collapse
Affiliation(s)
- Manuela Facchin
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino 155, 30172, Mestre, Italy
| | - Vanessa Gatto
- Crossing S.r.l., Viale della Repubblica 193/b, 31100, Treviso, Italy
| | - Riccardo Samiolo
- Crossing S.r.l., Viale della Repubblica 193/b, 31100, Treviso, Italy
| | - Silvia Conca
- Crossing S.r.l., Viale della Repubblica 193/b, 31100, Treviso, Italy
| | - Domenico Santandrea
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino 155, 30172, Mestre, Italy
| | - Valentina Beghetto
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino 155, 30172, Mestre, Italy; Crossing S.r.l., Viale della Repubblica 193/b, 31100, Treviso, Italy; Consorzio Interuniversitario per le Reattività Chimiche e La Catalisi (CIRCC), Via C. Ulpiani 27, 70126, Bari, Italy.
| |
Collapse
|
5
|
Synthesis of 2-Alkylaryl and Furanyl Acetates by Palladium Catalysed Carbonylation of Alcohols. Catalysts 2022. [DOI: 10.3390/catal12080883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The one-pot alkoxycarbonylation of halo-free alkylaryl and furanyl alcohols represents a sustainable alternative for the synthesis of alkylaryl and furanyl acetates. In this paper, the reaction between benzyl alcohol, chosen as a model substrate, CH3OH and CO was tested in the presence of a homogeneous palladium catalyst, an activator (isopropenyl acetate (IPAc) or dimethyl carbonate (DMC)) and a base (Cs2CO3). The influence of various reaction parameters such as the CO pressure, ligand and palladium precursor employed, mmol% catalyst load, temperature and time were investigated. The results demonstrate that decreasing the CO pressure from 50 bar to 5 bar at 130 °C for 18 h increases yields in benzyl acetate from 36% to over 98%. Further experiments were performed in the presence of piperonyl and furfuryl alcohol, interesting substrates employed for the synthesis of various fine chemicals. Moreover, furfuryl alcohol is a lignocellulosic-derived building block employed for the synthesis of functionalized furans such as 2-alkylfurfuryl acetates. Both the alcohols were successfully transformed in the corresponding acetate (yields above 96%) in rather mild reaction conditions (5–0.01 mol% catalyst, 5–2 bar CO pressure, 130 °C, 4–18h), demonstrating that the alkoxycarbonylation of alcohols represents a promising sustainable alternative to more impactful industrial practices adopted to date for the synthesis of alkylaryl and furfuryl acetates.
Collapse
|
6
|
Boosting physical-mechanical properties of adipic acid/chitosan films by DMTMM cross-linking. Int J Biol Macromol 2022; 209:2009-2019. [PMID: 35513101 DOI: 10.1016/j.ijbiomac.2022.04.181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 12/26/2022]
Abstract
In this paper we present a novel strategy to easily prepare biodegradable chitosan derived films as new packaging systems. Combination of chitosan, adipic acid and 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride (DMTMM) allowed to obtain high-performing cross-linked films. Biobased glycerol was employed as plasticizer. An in-depth study was performed on ten different samples in order to evaluate the role of DMTMM as cross-linking agent. Experimental data showed that 15 wt% of DMTMM enhanced moisture content and moisture uptake (10.42% and 11.11%), water vapor permeability (0.13 10-7 g m-1 h-1 Pa-1) and good UV barrier properties. Additionally, 30 wt% of DMTMM significantly increased the tensile strength of films up to 83 MPa and elongation at break values reached 39.7%. Thermogravimetric, IR, XRD and SEM analysis confirmed that physical-mechanical properties of the obtained films were considerably improved, due to cross-linking by DMTMM, demonstrating promising properties for packaging applications.
Collapse
|
7
|
Sole R, Toldo S, Bortoluzzi M, Beghetto V. A sustainable route for the synthesis of alkyl arylacetates via halogen and base free carbonylation of benzyl acetates. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00203e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The Pd-catalysed carbonylation of benzyl acetates for the synthesis of 2-alkylbenzyl acetates in the absence of base and halogen sources was investigated.
Collapse
Affiliation(s)
- Roberto Sole
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30172 (VE), Italy
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi (CIRCC), via C. Ulpiani 27, 70126 Bari, Italy
| | - Sofia Toldo
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30172 (VE), Italy
| | - Marco Bortoluzzi
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30172 (VE), Italy
| | - Valentina Beghetto
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30172 (VE), Italy
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi (CIRCC), via C. Ulpiani 27, 70126 Bari, Italy
| |
Collapse
|
8
|
Ferraro V, Sole R, Bortoluzzi M, Beghetto V, Castro J. Tris
‐isocyanide copper(I) complex enabling copper azide‐alkyne cycloaddition in neat conditions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Valentina Ferraro
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venice Italy
| | - Roberto Sole
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venice Italy
| | - Marco Bortoluzzi
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venice Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC) Bari Italy
| | - Valentina Beghetto
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venice Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC) Bari Italy
- Crossing srl Treviso Italy
| | - Jesús Castro
- Departamento de Química Inorgánica Universidade de Vigo, Facultade de Química, Edificio de Ciencias Experimentais Vigo Spain
| |
Collapse
|
9
|
Efficient Triazine Derivatives for Collagenous Materials Stabilization. MATERIALS 2021; 14:ma14113069. [PMID: 34199755 PMCID: PMC8200008 DOI: 10.3390/ma14113069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/16/2021] [Accepted: 05/31/2021] [Indexed: 12/28/2022]
Abstract
Nowadays, the need to reduce plastic waste and scantly biodegradable fossil-based products is of great importance. The use of leather as an alternative to synthetic materials is gaining renewed interest, but it is fundamental that any alternative to plastic-based materials should not generate an additional environmental burden. In the present work, a simple protocol for collagen stabilization mediated by 2-chloro-4,6-diethoxy-1,3,5-triazine (CDET) and a tert-amine has been described. Different tert-amines were tested in combination with CDET in a standard amidation reaction between 2-phenylethylamine and benzoic acid. Best performing condensation systems have been further tested for the cross-linking of both collagen powder and calf hides. The best results were achieved with CDET/NMM giving high-quality leather with improved environmental performances.
Collapse
|
10
|
Sole R, Gatto V, Conca S, Bardella N, Morandini A, Beghetto V. Sustainable Triazine-Based Dehydro-Condensation Agents for Amide Synthesis. Molecules 2021; 26:E191. [PMID: 33401732 PMCID: PMC7795458 DOI: 10.3390/molecules26010191] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
Conventional methods employed today for the synthesis of amides often lack of economic and environmental sustainability. Triazine-derived quaternary ammonium salts, e.g., 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM(Cl)), emerged as promising dehydro-condensation agents for amide synthesis, although suffering of limited stability and high costs. In the present work, a simple protocol for the synthesis of amides mediated by 2-chloro-4,6-dimethoxy-1,3,5-triazine (CDMT) and a tert-amine has been described and data are compared to DMTMM(Cl) and other CDMT-derived quaternary ammonium salts (DMT-Ams(X), X: Cl- or ClO4-). Different tert-amines (Ams) were tested for the synthesis of various DMT-Ams(Cl), but only DMTMM(Cl) could be isolated and employed for dehydro-condensation reactions, while all CDMT/tert-amine systems tested were efficient as dehydro-condensation agents. Interestingly, in best reaction conditions, CDMT and 1,4-dimethylpiperazine gave N-phenethyl benzamide in 93% yield in 15 min, with up to half the amount of tert-amine consumption. The efficiency of CDMT/tert-amine was further compared to more stable triazine quaternary ammonium salts having a perchlorate counter anion (DMT-Ams(ClO4)). Overall CDMT/tert-amine systems appear to be a viable and more economical alternative to most dehydro-condensation agents employed today.
Collapse
Affiliation(s)
- Roberto Sole
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Via Torino 155, 30172 Venezia, Italy; (R.S.); (S.C.); (N.B.); (A.M.)
| | - Vanessa Gatto
- Crossing srl, Viale della Repubblica 193/b, 31100 Treviso, Italy;
| | - Silvia Conca
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Via Torino 155, 30172 Venezia, Italy; (R.S.); (S.C.); (N.B.); (A.M.)
| | - Noemi Bardella
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Via Torino 155, 30172 Venezia, Italy; (R.S.); (S.C.); (N.B.); (A.M.)
| | - Andrea Morandini
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Via Torino 155, 30172 Venezia, Italy; (R.S.); (S.C.); (N.B.); (A.M.)
| | - Valentina Beghetto
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Via Torino 155, 30172 Venezia, Italy; (R.S.); (S.C.); (N.B.); (A.M.)
- Crossing srl, Viale della Repubblica 193/b, 31100 Treviso, Italy;
| |
Collapse
|
11
|
Beghetto V, Gatto V, Conca S, Bardella N, Buranello C, Gasparetto G, Sole R. Development of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride cross-linked carboxymethyl cellulose films. Carbohydr Polym 2020; 249:116810. [PMID: 32933659 DOI: 10.1016/j.carbpol.2020.116810] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 11/18/2022]
Abstract
First example of the use of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride (DMTMM) as cross-linking agent for the development of carboxymethyl cellulose (CMC) films for food packaging is reported. Influence of different wt % of DMTMM and glycerol on the physical-mechanical properties of CMC films was investigated. The presence of DMTMM effectively improved moisture uptake, moisture content, water vapour permeability, water solubility of the films, oil resistance together with good biodegradability. Best compromise between high water resistance, vapour permeability and mechanical properties was accomplished with 5 wt % DMTMM and 50 wt % glycerol giving tensile strength and elongation at break of 52.25 ± 4.33 and 37.32 ± 2.04 respectively. DSC, TGA and SEM analysis further confirmed CMC cross-linking by DMTMM. All films prepared showed low opacity and high transparencies. Therefore, data reported show that DMTMM can efficiently cross-link CMC to produce films for food packaging.
Collapse
Affiliation(s)
- Valentina Beghetto
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30170, Venezia, Italy; Crossing S.r.l., Viale della Repubblica 193/b, 31100, Treviso, Italy.
| | - Vanessa Gatto
- Crossing S.r.l., Viale della Repubblica 193/b, 31100, Treviso, Italy.
| | - Silvia Conca
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30170, Venezia, Italy.
| | - Noemi Bardella
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30170, Venezia, Italy.
| | - Chiara Buranello
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30170, Venezia, Italy.
| | - Giulia Gasparetto
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30170, Venezia, Italy.
| | - Roberto Sole
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30170, Venezia, Italy.
| |
Collapse
|