1
|
Kirse TM, Maisuls I, Cappellari MV, Niehaves E, Kösters J, Hepp A, Karst U, Wolcan E, Strassert CA. Neutral and Cationic Re(I) Complexes with Pnictogen-Based Coligands and Tunable Functionality: From Phosphorescence to Photoinduced CO Release. Inorg Chem 2024; 63:4132-4151. [PMID: 38382545 DOI: 10.1021/acs.inorgchem.3c03886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
In this work, we have explored Re(I) complexes featuring triphenylpnictogen (PnPh3, Pn = P, As, or Sb)-based coligands and bidentate (neutral or monoanionic) luminophores derived from 1,10-phenantroline (phen), as well as from 2-(3-(tert-butyl)-1H-1,2,4-triazol-5-yl)pyridine (H(N-tBu)). The effect of the increasingly heavy elements on the structural parameters, photoexcited-state properties, and electrochemical behavior as well as the hybridization defects and polarization of the Pn atoms was related to the charges of the main luminophores (i.e., phen vs N-tBu) and explored in terms of photoluminescence spectroscopy, X-ray diffractometry, and quantum-chemical methods. Therefore, an in-depth analysis of the bonding, crystal packing, excited-state energies, and lifetimes was assessed in liquid solutions, frozen glassy matrices, and crystalline phases along with a semiquantitative photoactivation study. Notably, by changing the main ligand from phen to N-tBu, an increase in radiative and radiationless deactivation rates (kr and knr, respectively) at 77 K together with a faster photoinduced CO release and fragmentation at room temperature was detected. In addition, a progressively red-shifted phosphorescence was observed with the growing atomic number of the pnictogen atom, along with a boost in kr and knr at 77 K. Down the Vth main group and upon coordination of the Pn atom to the Re(I) center, an increasingly prominent jump of s-orbital participation on the binding sxp3.00-orbitals of the Pn atoms is evidenced. Based on these findings, the ability of these complexes to act as tunable photoluminescent labels able to perform as light-driven CO-releasing molecules is envisioned.
Collapse
Affiliation(s)
- Thomas M Kirse
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 28/30, 48149 Münster, Germany
- CiMiC, SoN and CeNTech, Universität Münster, Heisenbergstr. 11, 48149 Münster, Germany
| | - Iván Maisuls
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 28/30, 48149 Münster, Germany
- CiMiC, SoN and CeNTech, Universität Münster, Heisenbergstr. 11, 48149 Münster, Germany
| | - María Victoria Cappellari
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 28/30, 48149 Münster, Germany
- CiMiC, SoN and CeNTech, Universität Münster, Heisenbergstr. 11, 48149 Münster, Germany
| | - Erik Niehaves
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Jutta Kösters
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Alexander Hepp
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Uwe Karst
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Ezequiel Wolcan
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, UNLP, CCT La Plata-CONICET), Diagonal 113 and 64, Sucursal 4, Casilla de Correo 16, La Plata B1906, Argentina
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 28/30, 48149 Münster, Germany
- CiMiC, SoN and CeNTech, Universität Münster, Heisenbergstr. 11, 48149 Münster, Germany
| |
Collapse
|
2
|
Kirse TM, Maisuls I, Spierling L, Hepp A, Kösters J, Strassert CA. One Dianionic Luminophore with Three Coordination Modes Binding Four Different Metals: Toward Unexpectedly Phosphorescent Transition Metal Complexes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306801. [PMID: 38161218 PMCID: PMC10953592 DOI: 10.1002/advs.202306801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/08/2023] [Indexed: 01/03/2024]
Abstract
This work reports on a battery of coordination compounds featuring a versatile dianionic luminophore adopting three different coordination modes (mono, bi, and tridentate) while chelating Pd(II), Pt(II), Au(III), and Hg(II) centers. An in-depth structural characterization of the ligand precursor (H2 L) and six transition metal complexes ([HLPdCNtBu], [LPtCl], [LPtCNtBu], [LPtCNPhen], [HLHgCl], and [LAuCl]) is presented. The influence of the cations and coordination modes of the luminophore and co-ligands on the photophysical properties (including photoluminescence quantum yields (ΦL ), excited state lifetimes (τ), and average (non-)radiative rate constants) are evaluated at various temperatures in different phases. Five complexes show interesting photophysical properties at room temperature (RT) in solution. Embedment in frozen glassy matrices at 77 K significantly boosts their luminescence by suppressing radiationless deactivation paths. Thus, the Pt(II)-based compounds provide the highest efficiencies, with slight variations upon exchange of the ancillary ligand. In the case of [HLPdCNtBu], both ΦL and τ increase over 30-fold as compared to RT. Furthermore, the Hg(II) complex achieves, for the first time in its class, a ΦL exceeding 60% and millisecond-range lifetimes. This demonstrates that a judicious ligand design can pave the way toward versatile coordination compounds with tunable excited state properties.
Collapse
Affiliation(s)
- Thomas M. Kirse
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstr. 28/3048149MünsterGermany
- CiMiCSoN and CeNTechUniversität MünsterHeisenbergstr. 1148149MünsterGermany
| | - Iván Maisuls
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstr. 28/3048149MünsterGermany
- CiMiCSoN and CeNTechUniversität MünsterHeisenbergstr. 1148149MünsterGermany
| | - Leander Spierling
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstr. 28/3048149MünsterGermany
- CiMiCSoN and CeNTechUniversität MünsterHeisenbergstr. 1148149MünsterGermany
| | - Alexander Hepp
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstr. 28/3048149MünsterGermany
| | - Jutta Kösters
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstr. 28/3048149MünsterGermany
| | - Cristian A. Strassert
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstr. 28/3048149MünsterGermany
- CiMiCSoN and CeNTechUniversität MünsterHeisenbergstr. 1148149MünsterGermany
| |
Collapse
|
3
|
Coe JV, Dressick WJ, Turro C. Etalon-Assisted Study of the Strong CO Ligand Vibrations of the fac-[Re(CO) 3(bpy)(CH 3CN)] + Octahedral Complex. J Phys Chem B 2023. [PMID: 37449838 DOI: 10.1021/acs.jpcb.3c02496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The strong CO ligand vibrations of an octahedral complex, fac-[Re (CO)3(bpy)(CH3CN)]+, in acetonitrile are observed at 2040 and 1932 cm-1. Facial rhenium tricarbonyl systems offer very strong and isolated CO vibrations with the potential for interactions between these vibrations. This work first identifies the dominant ion-pair species using attenuated total reflection infrared (ATR-IR) absorption spectra on a dilution series and then determines the strength of these CO ligand vibrations (as isolated vibrations) with a combination of ATR-IR and etalon-based measurements that determine the absolute complex index of refraction of the solution. Finally, the etalon experiments are modeled to study the interaction between vibrations, which is a property not embedded in the solution's complex index of refraction. The ATR-IR spectra are accomplished on a dilution series as well as a larger set of spectra as these solutions evaporated. The A'(1) CO ligand band at 2040 cm-1 is fit with a sum of three Lorentzian functions characterizing the distribution of free, solvent-separated, and contact ion pairs of this octahedral complex vs concentration. The other CO ligand band at 1932 cm-1 is broader and complicated by the dynamics of vibrational interactions, the unresolved splitting of the A'(2) and A″ CO vibrations, and ion-pair speciation. The etalon transmission measurements vs angle were on a 0.029 M solution, and Rabi splittings of 19 and 38 cm-1 were observed for the A'(1) CO vibration and the unresolved A'(2) + A″ CO vibrations, respectively. The great strength of the CO ligand vibrations is evident despite the use of a dilute solution. Integrated band intensities are reported in comparison to hybrid density functional calculations for isolated vibrations. Then, the observed Rabi splittings are modeled to obtain the coupling strength of the CO ligand vibration with etalon cavity modes and with each other. In summary, this work develops a method to determine the concentration of these solutions from the ATR-IR spectrum, characterizes the ion-pairing, shows that the index of refraction is not constant in the IR spectral region of interest, and develops an interaction Hamiltonian that characterizes cavity-vibration and vibration-vibration coupling.
Collapse
Affiliation(s)
- James V Coe
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210-1173, United States
| | - Walter J Dressick
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210-1173, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210-1173, United States
| |
Collapse
|
4
|
Meitinger N, Mandal S, Sorsche D, Pannwitz A, Rau S. Red Light Absorption of [Re I(CO) 3(α-diimine)Cl] Complexes through Extension of the 4,4'-Bipyrimidine Ligand's π-System. Molecules 2023; 28:molecules28041905. [PMID: 36838893 PMCID: PMC9964139 DOI: 10.3390/molecules28041905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/19/2023] Open
Abstract
Rhenium(I) complexes of type [Re(CO)3(NN)Cl] (NN = α-diimine) with MLCT absorption in the orange-red region of the visible spectrum have been synthesized and fully characterized, including single crystal X-ray diffraction on two complexes. The strong bathochromic shift of MLCT absorption was achieved through extension of the π-system of the electron-poor bidiazine ligand 4,4'-bipyrimidine by the addition of fused phenyl rings, resulting in 4,4'-biquinazoline. Furthermore, upon anionic cyclization of the twisted bidiazine, a new 4N-doped perylene ligand, namely, 1,3,10,12-tetraazaperylene, was obtained. Electrochemical characterization revealed a significant stabilization of the LUMO in this series, with the first reduction of the azaperylene found at E1/2(0/-) = -1.131 V vs. Fc+/Fc, which is the most anodic half-wave potential observed for N-doped perylene derivatives so far. The low LUMO energies were directly correlated to the photophysical properties of the respective complexes, resulting in a strongly red-shifted MLCT absorption band in chloroform with a λmax = 586 nm and high extinction coefficients (ε586nm > 5000 M-1 cm-1) ranging above 700 nm in the case of the tetraazaperylene complex. Such low-energy MLCT absorption is highly unusual for Re(I) α-diimine complexes, for which these bands are typically found in the near UV. The reported 1,3,10,12-tetraazaperylene complex displayed the [Re(CO)3(α-diimine)Cl] complex with the strongest MLCT red shift ever reported. UV-Vis NIR spectroelectrochemical investigations gave further insights into the nature and stability of the reduced states. The electron-poor ligands explored herein open up a new path for designing metal complexes with strongly red-shifted absorption, thus enabling photocatalysis and photomedical applications with low-energy, tissue-penetrating red light in future.
Collapse
|
5
|
Luminescent fac-[ReX(CO) 3(phenyl-pyta)] (X = Cl, Br, I) complexes: influence of the halide ligand on the electronic properties in solution and in the solid state. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023; 22:169-184. [PMID: 36178667 DOI: 10.1007/s43630-022-00307-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
Tricarbonylrhenium(I) complexes that incorporate a chloride ligand are promising photoluminescent materials, but those incorporating a bromide or iodide ligand have received very little attention regarding their solid-state properties. In this work, three rhenium(I) complexes differing only by the nature of their halide ligand (X = Cl, Br, and I) were compared. They are based on a fac-[ReX(CO)3(N^N)] framework where the N^N bidentate ligand is a 3-(2-pyridyl)-1,2,4-triazole unit functionalized by an appended phenyl group. DFT calculations showed that the character of the lowest energy transitions progressively changes from Re → N^N ligand (MLCT) to X → N^N ligand (XLCT) when increasing the size of the halogen atom. Regarding the electrochemical behavior, the chloride and bromide complexes 1-Cl and 1-Br were similar, while the iodide complex 1-I exhibited a strikingly different electrochemical signature in oxidation. From a spectroscopic viewpoint, all three complexes emitted weak red-orange phosphorescence in dichloromethane solution. However, in the solid state, marked differences appeared. Not only was 1-Cl a good emitter of yellow light, but it had strong solid-state luminescence enhancement (SLE) properties. In comparison, 1-Br and 1-I were less emissive and they showed better mechanoresponsive luminescence (MRL) properties, probably related to a loose molecular arrangement in the crystal packing and to the opening of vibrational non-radiative deactivation pathways. This study highlights for the first time how the nature of the halide ligand in this type of complex allows fine tuning of the solid-state optical properties, for potential applications either in bio-imaging or in the field of MRL-active materials.
Collapse
|
6
|
Photoinduced Processes in Rhenium(I) Terpyridine Complexes Bearing Remote Amine Groups: New Insights from Transient Absorption Spectroscopy. Molecules 2022; 27:molecules27217147. [DOI: 10.3390/molecules27217147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Photophysical properties of two Re(I) complexes [ReCl(CO)3(R-C6H4-terpy-κ2N)] with remote amine groups, N-methyl-piperazinyl (1) and (2-cyanoethyl)methylamine (2), were investigated. The complexes show strong absorption in the visible region corresponding to metal-to-ligand charge transfer (1MLCT) and intraligand-charge-transfer (1ILCT) transitions. The energy levels of 3MLCT and 3ILCT excited-states, and thus photoluminescence properties of 1 and 2, were found to be strongly affected by the solvent polarity. Compared to the parent chromophore [ReCl(CO)3(C6H5-terpy-κ2N)] (3), both designed complexes show significantly prolonged (by 1–2 orders of magnitude) phosphorescence lifetimes in acetonitrile and dimethylformamide, contrary to their lifetimes in less polar chloroform and tetrahydrofuran, which are comparable to those for 3. The femtosecond transient absorption (fsTA) measurements confirmed the interconversion between the 3MLCT and 3ILCT excited-states in polar solvents. In contrast, the emissive state of 1 and 2 in less polar environments is of predominant 3MLCT nature.
Collapse
|
7
|
Maisuls I, Kirse TM, Hepp A, Kösters J, Wolcan E, Strassert CA. Rhenium(I) Complexes with Neutral Monodentate Coligands and Monoanionic 2-(1,2,4-Triazol-5-yl)pyridine-Based Chelators as Bidentate Luminophores with Tunable Color and Photosensitized Generation of 1O 2: An Integrated Case Study Involving Photophysics and Theory. Inorg Chem 2022; 61:13775-13791. [PMID: 35998339 DOI: 10.1021/acs.inorgchem.2c01572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we describe the synthesis as well as structural, photophysical, and theoretical investigation of a new coordination chemical concept involving rhenium(I) complexes bearing monoanionic 1,2,4-triazolylpyridine-based bidentate chromophores. The X-ray diffractometric analysis of single crystals revealed particular packing features: the trifluoromethylated exemplar displayed two kinds of arrangements of the coordination centers, where the bidentate ligands at the edges of the unit cell are staggered parallel to each other, whereas those inside show antiparallel stacking with respect to the external ligands. On the other hand, the complexes bearing an adamantyl substituent yield a linear arrangement, where the bulky moiety of one luminophore points to the pyridine center of the adjacent ligand of the neighboring complex while including methanol molecules hydrogen-bonded to the triazolato unit. We observed that the photophysical properties of the complexes (photoexcited-state lifetimes, photoluminescence maxima and quantum yields) can be adjusted by tuning of the substitution pattern at the bidentate luminophore as well as by variation of the monodentate coligand. The photoluminescence spectra and photoexcited-state lifetimes of the crystalline phases were measured by phosphorescence lifetime micro(spectro)scopy. Interestingly, the vibrationally resolved emission spectra of the crystals closely resemble those of diluted frozen glassy matrixes at 77 K, in contrast with the broad bands observed in amorphous solids and in fluid solutions, where the charge-transfer character is enhanced. While the photoluminescence quantum yields (ΦL) reach up to 15%, the complexes are able to attain up to 55% efficiency regarding the photosensitization of 1O2 (ΦΔ), depending on the combination of luminophore and coligand. Theoretical calculations showed that the photoexcited triplet (T1) state has a metal-ligand-to-ligand charge-transfer character, where promotion to the excited electronic configuration shortens the Re(I)-N bond involving the bidentate triazolylpyridine while stretching the three fac-CO-Re(I) bonds as well as the linkage to the axial monodentate coligand. The calculated vertical (Evl) and 0-0 (E(0-0)) radiative transition energies are in very good agreement with the experimental values (Eexplum).
Collapse
Affiliation(s)
- Iván Maisuls
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, Münster D-48149, Germany.,CeNTech, CiMIC, SoN, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, Münster D-48149, Germany
| | - Thomas M Kirse
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, Münster D-48149, Germany.,CeNTech, CiMIC, SoN, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, Münster D-48149, Germany
| | - Alexander Hepp
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, Münster D-48149, Germany
| | - Jutta Kösters
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, Münster D-48149, Germany
| | - Ezequiel Wolcan
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, UNLP, CCT La Plata-CONICET), Diagonal 113 and 64, Sucursal 4, Casilla de Correo 16, La Plata B1906, Argentina
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, Münster D-48149, Germany.,CeNTech, CiMIC, SoN, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, Münster D-48149, Germany
| |
Collapse
|
8
|
Poirot A, Vanucci-Bacqué C, Delavaux-Nicot B, Leygue N, Saffon-Merceron N, Alary F, Bedos-Belval F, Benoist E, Fery-Forgues S. Phenyl-pyta-tricarbonylrhenium(I) complexes: combining a simplified structure and steric hindrance to modulate the photoluminescence properties. Dalton Trans 2021; 50:13686-13698. [PMID: 34523629 DOI: 10.1039/d1dt02161c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Strongly luminescent tricarbonylrhenium(I) complexes are promising candidates in the field of optical materials. In this study, three new complexes bearing a 3-(2-pyridyl)-1,2,4-triazole (pyta) bidentate ligand with an appended phenyl group were obtained in very good yields owing to an optimized synthetic procedure. The first member of this series, i.e. complex 1, was compared with the previously studied complex RePBO to understand the influence of the fluorescent benzoxazole unit grafted on the phenyl ring. Then, to gauge the effect of steric hindrance on the luminescence properties, the phenyl group of complex 1 was substituted in the para position by a bulky tert-butyl group or an adamantyl moiety, affording complexes 2 and 3, respectively. The results of theoretical calculations indicated that these complexes were quite similar from an electronic point of view, as evidenced by the electrochemical study. In dichloromethane solution, under excitation in the UV range, all the complexes emitted weak phosphorescence in the red region. In the solid state, they could be excited in the blue region of the visible spectrum and they emitted strong yellow light. The photoluminescence quantum yield was markedly increased with raising the size of the substituent, passing from 0.42 for 1 to 0.59 for 3. The latter complex also exhibited clear waveguiding properties, unprecedented for rhenium complexes. From this point of view, these easy-synthesized and spectroscopically attractive complexes constitute a new generation of emitters for use in imaging applications and functional materials. However, the comparison with RePBO showed that the presence of the benzoxazole group leads to unsurpassed mechanoresponsive luminescence (MRL) properties, due to the involvement of a unique photophysical mechanism that takes place only in this type of complex.
Collapse
Affiliation(s)
- Alexandre Poirot
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Corinne Vanucci-Bacqué
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Béatrice Delavaux-Nicot
- Laboratoire de Chimie de Coordination, CNRS (UPR 8241), Université de Toulouse (UPS, INPT), 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Nadine Leygue
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Nathalie Saffon-Merceron
- Service Diffraction des Rayons X, Institut de Chimie de Toulouse, ICT- UAR 2599, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Fabienne Alary
- Laboratoire de Chimie et Physique Quantiques (LCPQ), CNRS UMR 5626, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Florence Bedos-Belval
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Eric Benoist
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Suzanne Fery-Forgues
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| |
Collapse
|
9
|
Komreddy V, Ensz K, Nguyen H, Rillema DP, Moore CE. Design, synthesis, and photophysical properties of Re(I) tricarbonyl 1,10-phenanthroline complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.128739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
10
|
Martin SM, Oldacre AN, Pointer CA, Huang T, Repa GM, Fredin LA, Young ER. Proton-controlled non-exponential photoluminescence in a pyridylamidine-substituted Re(I) complex. Dalton Trans 2021; 50:7265-7276. [PMID: 33954322 DOI: 10.1039/d1dt01132d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical intuition and well-known design principles can typically be used to create ligand environments in transition metal complexes to deliberately tune reactivity for desired applications. However, intelligent ligand design does not always result in the expected outcomes. Herein we report the synthesis and characterization of a tricarbonyl rhenium (2,2'-bipyridine) 4-pyridylamidine, Re(4-Pam), complex with unexpected photophysical properties. Photoluminescence kinetics of Re(4-Pam) undergoes non-exponential decay, which can be deconvolved into two emission lifetimes. However, upon protonation of the amidine functionality of the 4-pyridylamidine to form Re(4-PamH), a single exponential decay is observed. To understand and rationalize these experimental observations, density functional theory (DFT) and time-dependent density functional theory (TDDFT) are employed. The symmetry or asymmetry of the protonated or deprotonated 4-pyridylamidine ligand, respectively, is the key factor in switching between one and two photoluminescence lifetimes. Specifically, rotation of the dihedral angle formed between the bipyridine and 4-Pam ligand leads to two rotamers of Re(4-Pam) with degenerate triplet- to ground-state transitions.
Collapse
Affiliation(s)
- Shea M Martin
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| | - Amanda N Oldacre
- Department of Chemistry, St Lawrence University, Canton, New York 13617, USA
| | - Craig A Pointer
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| | - Tao Huang
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| | - Gil M Repa
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| | - Lisa A Fredin
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| | - Elizabeth R Young
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| |
Collapse
|