1
|
Ferraro V, Bizzarri C, Bräse S. Thermally Activated Delayed Fluorescence (TADF) Materials Based on Earth-Abundant Transition Metal Complexes: Synthesis, Design and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404866. [PMID: 38984475 PMCID: PMC11426009 DOI: 10.1002/advs.202404866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Materials exhibiting thermally activated delayed fluorescence (TADF) based on transition metal complexes are currently gathering significant attention due to their technological potential. Their application extends beyond optoelectronics, in particular organic light-emitting diodes (OLEDs) and light-emitting electrochemical cells (LECs), and include also photocatalysis, sensing, and X-ray scintillators. From the perspective of sustainability, earth-abundant metal centers are preferred to rarer second- and third-transition series elements, thus determining a reduction in costs and toxicity but without compromising the overall performances. This review offers an overview of earth-abundant transition metal complexes exhibiting TADF and their application as photoconversion materials. Particular attention is devoted to the types of ligands employed, helping in the design of novel systems with enhanced TADF properties.
Collapse
Affiliation(s)
- Valentina Ferraro
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Claudia Bizzarri
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| |
Collapse
|
2
|
Nurzhanov M, Mathur A, Li Y, Khamgaonkar S, Jeon SJ, Maheshwari V, Li Y. Dicyanobenzene passivated perovskite solar cells with enhanced efficiency and stability. JOURNAL OF MATERIALS CHEMISTRY C 2023; 11:15881-15891. [DOI: 10.1039/d3tc03238h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Dicyanobenzene (DCB), a weak Lewis base, effectively passivates perovskite films by eliminating residual PbI2, enhancing crystallinity, and reducing trap state density, thus enhancing perovskite solar cell performance and stability.
Collapse
Affiliation(s)
- Merlan Nurzhanov
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1, Canada
| | - Avi Mathur
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Yaoyao Li
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1, Canada
| | - Saikiran Khamgaonkar
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Sung Jae Jeon
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1, Canada
| | - Vivek Maheshwari
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Yuning Li
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
3
|
Huang Q, Zhang R, He LH, Chen JL, Zhao F, Liu SJ, Wen HR. Thermo-, Mechano-, and Vapochromic Dinuclear Cuprous-Emissive Complexes with a Switchable CH 3CN-Cu Bond. Inorg Chem 2022; 61:15629-15637. [PMID: 36129327 DOI: 10.1021/acs.inorgchem.2c02506] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A thermo-, mechano-, and vapochromic bimetallic cuprous-emissive complex has been reported, and the origin and application of its tri-stimuli-responsive luminescence have been explored. As revealed by single-crystal structure analysis, thermo- and vapochromic luminescence adjusted by heating at 60 °C and CH3CN vapor fuming, accompanied by a crystalline-to-crystalline transition, is due to the breaking and rebuilding of the CH3CN-Cu bond, as supported by 1H nuclear magnetic resonance (NMR), Fourier-transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), thermogravimetry (TG), and time-dependent density functional theory (TD-DFT) analyses of the CH3CN-coordinated species [Cu2(μ-dppa)2(μ-η1(N)η2(N,N)-fptz)(CH3CN)](ClO4)·H2O (1) and its CH3CN-removed derivative [Cu2(μ-dppa)2(μ-η1(N)η2(N,N)-fptz)](ClO4)·H2O (2). Luminescence mechanochromism, mixed with a crystalline-to-amorphous transition where the initial crystalline is different for 1 and 2, is mainly assigned as the destruction of the CH3CN-Cu bonding and/or the O···HNdppa and OH···Ntriazolyl hydrogen bonds. It is also suggested that a rational use of switchable coordination such as weak metal-solvent bonding is a feasible approach to develop multi-stimuli-responsive luminescent materials and devices.
Collapse
Affiliation(s)
- Qin Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Rui Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Li-Hua He
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Jing-Lin Chen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Feng Zhao
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
| | - Sui-Jun Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - He-Rui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| |
Collapse
|
4
|
Kirst C, Tietze J, Mayer P, Böttcher H, Karaghiosoff K. Coinage Metal Complexes of Bis(quinoline-2-ylmethyl)phenylphosphine-Simple Reactions Can Lead to Unprecedented Results. ChemistryOpen 2022; 11:e202100224. [PMID: 35146971 PMCID: PMC8889507 DOI: 10.1002/open.202100224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
The different coordination behavior of the flexible yet sterically demanding, hemilabile P,N ligand bis(quinoline-2-ylmethyl)phenylphosphine (bqmpp) towards selected CuI , AgI and AuI species is described. The resulting X-ray crystal structures reveal interesting coordination geometries. With [Cu(MeCN)4 ]BF4 , compound 1 [Cu2 (bqmpp)2 ](BF4 )2 is obtained, wherein the copper(I) atoms display a distorted square planar and square pyramidal geometry. The steric demand and π-stacking of the ligand allow for a short Cu⋅⋅⋅Cu distance (2.588(9) Å). CuI complex 2 [Cu4 Cl3 (bqmpp)2 ]BF4 contains a rarely observed Cu4 Cl3 cluster, probably enabled by dichloromethane as the chloride source. In the cluster, even shorter Cu⋅⋅⋅Cu distances (2.447(1) Å) are present. The reaction of Ag[SbF6 ] with the ligand leads to a dinuclear compound (3) in solution as confirmed by 31 P{1 H} NMR spectroscopy. During crystallization, instead of the expected phosphine complex 3, a tris(quinoline-2-ylmethyl)bisphenyl-phosphine (tqmbp) compound [Ag2 (tqmbp)2 ](SbF6 )2 4 is formed by elimination of quinaldine. The Au(I) compound [Au2 (bqmpp)2 ]PF6 (5) is prepared as expected and shows a linear arrangement of two phosphine ligands around AuI .
Collapse
Affiliation(s)
- Christin Kirst
- Department of ChemistryLudwig-Maximilians University of MunichButenandtstr. 5–13(D) 81377MunichGermany
| | - Jonathan Tietze
- Department of ChemistryLudwig-Maximilians University of MunichButenandtstr. 5–13(D) 81377MunichGermany
| | - Peter Mayer
- Department of ChemistryLudwig-Maximilians University of MunichButenandtstr. 5–13(D) 81377MunichGermany
| | - Hans‐Christian Böttcher
- Department of ChemistryLudwig-Maximilians University of MunichButenandtstr. 5–13(D) 81377MunichGermany
| | - Konstantin Karaghiosoff
- Department of ChemistryLudwig-Maximilians University of MunichButenandtstr. 5–13(D) 81377MunichGermany
| |
Collapse
|
5
|
Li P, Li M, Li SZ, Wang JF, Dong WK. INVESTIGATION ON THE FLUORESCENT PROPERTY AND THE HIRSHFELD SURFACE ANALYSIS OF A NOVEL HETEROBIMETALLIC Cd(II)—Na(I) PYRIDINE-TERMINAL SALAMO-TYPE COORDINATION POLYMER. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621090079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Xue T, Cramer RE, Vicic DA. Access to Perfluorometallacyclopentane Complexes of Cobalt through the [(MeCN)4Co(C4F8)][PF6] Precursor. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Teng Xue
- Department of Chemistry, Lehigh University, 6 East Packer Ave, Bethlehem, Pennsylvania 18015, United States
| | - Roger E. Cramer
- Department of Chemistry, University of Hawaii, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - David A. Vicic
- Department of Chemistry, Lehigh University, 6 East Packer Ave, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|