1
|
Malmir M, Heravi MM, Shafiei Toran Poshti E. Facile Cu-MOF-derived Co 3O 4 mesoporous-structure as a cooperative catalyst for the reduction nitroarenes and dyes. Sci Rep 2024; 14:6846. [PMID: 38514684 PMCID: PMC10958026 DOI: 10.1038/s41598-024-52708-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/23/2024] [Indexed: 03/23/2024] Open
Abstract
The present study describes the environmentally friendly and cost-effective synthesis of magnetic, mesoporous structure-Co3O4 nanoparticles (m-Co3O4) utilizing almond peel as a biotemplate. This straightforward method yields a material with high surface area, as confirmed by various characterization techniques. Subsequently, the utilization of m-Co3O4, graphene oxide (GO), Cu(II)acetate (Cu), and asparagine enabled the successful synthesis of a novel magnetic MOF, namely GO-Cu-ASP-m-Co3O4 MOF. This catalyst revealed remarkable stability that could be easily recovered using a magnet for consecutive use without any significant decline in activity for eight cycles in nitro compound reduction and organic dye degradation reactions. Consequently, GO-Cu-ASP-m-Co3O4 MOF holds immense potential as a catalyst for reduction reactions, particularly in the production of valuable amines with high industrial value, as well as for the elimination of toxic-water pollutants such as organic dyes.
Collapse
Affiliation(s)
- Masoume Malmir
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, PO Box: 1993891176, Tehran, Iran.
| | - Majid M Heravi
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, PO Box: 1993891176, Tehran, Iran.
| | - Elham Shafiei Toran Poshti
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, PO Box: 1993891176, Tehran, Iran
| |
Collapse
|
2
|
Zhang C, He Q, Luo W, Du J, Tao Y, Lu J, Cheng Y, Wang H. Porous carbon with the synergistic effect of cellulose fibers and MOFs as the anode for high-performance Li-ion batteries. Int J Biol Macromol 2024; 257:128745. [PMID: 38101673 DOI: 10.1016/j.ijbiomac.2023.128745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/22/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
The commercial graphene for Li ion batteries (LIBs) has high cost and low capacity. Therefore, it is necessary to develop a novel carbon anode. The cellulose nanowires (CNWs), which has advantages of low cost, high carbon content, is thought as a good carbon precursor. However, direct carbonization of CNWs leads to low surface area and less mesopores due to its easy aggregation. Herein, the metal-organic frameworks (MOFs) have been explored as templates to prepare porous carbon due to their 3D open pore structures. The porous carbon was developed with the coordination effect of CNWs and MOFs. The precursor of MOFs coordinates with the -OH and - COOH groups in the CNWs to provide stable structure. And the MOFs was grown in situ on CNWs to reduce aggregation and provide higher porosity. The results show that the porous carbon has high specific capacity and fast Li+/electronic conductivity. As anode for LIBs, it displays 698 mAh g-1 and the capacity retention is 85 % after 200 cycles. When using in the full-battery system, it exhibits energy density of 480 Wh kg-1, suggesting good application value. This work provides a low-cost method to synthesize porous carbon with fast Li+/electronic conductivity for high-performance LIBs.
Collapse
Affiliation(s)
- Chaoqun Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Qi He
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Wenbin Luo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Jian Du
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Yehan Tao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Jie Lu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Yi Cheng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Haisong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
3
|
Bazhina ES, Kiskin MA, Babeshkin KA, Efimov NN, Fedin MV, Eremenko IL. Effect of the solvent on the formation of new oxovanadium(IV) complexes with pentafluorobenzoate anions and 1,10-phenanthroline. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
One-step hydrothermal synthesis of coordination polymers with high specific capacity and superior lithium storage properties. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Addition of dissimilar metal nodes to improve the electrochemical performance of MOF as a supercapacitor. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
6
|
Sun PP, Zhang YH, Shi H, Shi FN. Study on the properties of Cu powder modified 3-D Co-MOF in electrode materials of lithium ion batteries. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122740] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Lv XN, Zhang YH, Sun PP, Wang PF, Tang JJ, Yang G, Shi Q, Shi FN. One pot synthesis of lanthanide-iron-sodium trimetallic metal-organic frameworks as anode materials for lithium-ion batteries. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122786] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Palladated composite of Cu-BDC MOF and perlite as an efficient catalyst for hydrogenation of nitroarenes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131793] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Zhu H, Liao S, Bian R, Su B, Ding X, Li M, Ge S, Zhang H, Liu Q. An Iron Supramolecular Compound Containing Terpyridine Polycarboxylic Acid for High Performance Lithium-Ion Batteries. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Louati M, Neacsa DM, Ksiksi R, Autret-Lambert C, Zid MF. Synthesis, structural, spectroscopic and thermal studies of a decavanadate complex (C4NH10)4[H2V10O28].2H2O. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Yang DX, Wang PF, Liu HY, Zhang YH, Sun PP, Shi FN. Facile synthesis of ternary transition metal-organic framework and its stable lithium storage properties. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122947] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Li J, Lin H, Tang C, Yu D, Sun J, Zhang W, Wang Y. Na doping into Li-rich layered single crystal nanoparticles for high-performance lithium-ion batteries cathodes. NANOTECHNOLOGY 2021; 33:065705. [PMID: 34724655 DOI: 10.1088/1361-6528/ac353c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Lithium-rich layered manganese-based cathodes (LRLMOs) with first-class energy density (∼1000 W h kg-1) have attracted wide attention. Nevertheless, the weak cycle stability and bad rate capability obstruct their large-scale commercial application. Here, single crystal Li1.2-xNaxNi0.2Mn0.6O2(x = 0, 0.05, 0.1, 0.15) nanoparticles are designed and successfully synthesized due to the single crystal structure with smaller internal stress and larger ionic radius of Na. The synergistic advantages of single crystal structure and Na doping are authenticated as cathodes for Li ion batteries (LIBs), which can consolidate the crystallographic structure and be benefit for migration of lithium ion. Among all the Na doping single crystals, Li1.1Na0.1Ni0.2Mn0.6O2cathode possesses supreme cycling life and discharge capacity at large current density. To be more specific, it exhibits a discharge capacity of 264.2 mAh g-1after 50 charge and discharge cycles, higher than that of undoped material (214.9 mAh g-1). The discharge capacity of Li1.1Na0.1Ni0.2Mn0.6O2cathode at 10 C (1 C = 200 mA g-1) is enhanced to 160.4 mAh g-1(106.7 mAh g-1forx = 0 sample). The creative strategy of Na doping single crystal LRLMOs might furnish an idea to create cathode materials with high energy and power density for next generation LIBs.
Collapse
Affiliation(s)
- Jili Li
- Material Science and Engineering School, Henan Province International Joint Laboratory of Materials for Solar Energy Conversion and Lithium Sodium based Battery & Henan Key Laboratory of Special Protective Materials, Luoyang Institute of Science and Technology, Luoyang 471023, People's Republic of China
| | - Haiyan Lin
- Material Science and Engineering School, Henan Province International Joint Laboratory of Materials for Solar Energy Conversion and Lithium Sodium based Battery & Henan Key Laboratory of Special Protective Materials, Luoyang Institute of Science and Technology, Luoyang 471023, People's Republic of China
| | - Chunjuan Tang
- Material Science and Engineering School, Henan Province International Joint Laboratory of Materials for Solar Energy Conversion and Lithium Sodium based Battery & Henan Key Laboratory of Special Protective Materials, Luoyang Institute of Science and Technology, Luoyang 471023, People's Republic of China
| | - Dongsheng Yu
- Material Science and Engineering School, Henan Province International Joint Laboratory of Materials for Solar Energy Conversion and Lithium Sodium based Battery & Henan Key Laboratory of Special Protective Materials, Luoyang Institute of Science and Technology, Luoyang 471023, People's Republic of China
| | - Jie Sun
- Material Science and Engineering School, Henan Province International Joint Laboratory of Materials for Solar Energy Conversion and Lithium Sodium based Battery & Henan Key Laboratory of Special Protective Materials, Luoyang Institute of Science and Technology, Luoyang 471023, People's Republic of China
| | - Wanzhen Zhang
- Material Science and Engineering School, Henan Province International Joint Laboratory of Materials for Solar Energy Conversion and Lithium Sodium based Battery & Henan Key Laboratory of Special Protective Materials, Luoyang Institute of Science and Technology, Luoyang 471023, People's Republic of China
| | - Yujiang Wang
- Material Science and Engineering School, Henan Province International Joint Laboratory of Materials for Solar Energy Conversion and Lithium Sodium based Battery & Henan Key Laboratory of Special Protective Materials, Luoyang Institute of Science and Technology, Luoyang 471023, People's Republic of China
| |
Collapse
|