Liu X, Wang X, Sun C, Hu X, Song W. Brine available two-dimensional nano-architectonics of fluorescent probe based on phosphate doped ZIF-L for detection of Fe
3.
Heliyon 2023;
9:e17884. [PMID:
37539111 PMCID:
PMC10393607 DOI:
10.1016/j.heliyon.2023.e17884]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Herein, we propose a simple and effective strategy for designing a zeolitic imidazolate frameworks (ZIFs) fluorescent probe with a two-dimensional leaf-like structure. By doping ZIF-L with phosphate, we developed a fluorescent probe for iron (Fe3+) in systems with high salinity. The fluorescence of P-ZIF-L was quenched effectively with the presence of Fe3+. The physicochemical structure, surface morphology, selectivity, stability and composition of the probe were investigated. Under optimized conditions, the fluorescent probe had a detection limit of 0.5 μM. Furthermore, the results that the probe exhibited desirable salt-tolerance and was suitable for determination of Fe3+ in brine water samples with satisfactory results.
Collapse