1
|
Zhang D, Gil D, Kim C. A Dual-target Fluorescent Chemosensor for Detecting Indium (III) and Hypochlorite with High Selectivity. J Fluoresc 2024; 34:743-753. [PMID: 37358760 DOI: 10.1007/s10895-023-03326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
A dual-target fluorescent chemosensor BQC (((E)-N-benzhydryl-2-(quinolin-2-ylmethylene)hydrazine-1-carbothioamide) was synthesized for detecting In3+ and ClO-. BQC displayed green and blue fluorescence responses to In3+ and ClO- with low detection limits (0.83 µM for In3+ and 2.50 µM for ClO-), respectively. Importantly, BQC is the first fluorescent chemosensor capable of detecting In3+ and ClO-. The binding ratio between BQC and In3+ was determined to be a 2:1 through Job plot and ESI-MS analysis. BQC could be successfully utilized as a visible test kit to detect In3+. Meanwhile, BQC showed a selective turn-on response to ClO- even in the presence of anions or reactive oxygen species. The sensing mechanisms of BQC for In3+ and ClO- were demonstrated by 1 H NMR titration, ESI-MS and theoretical calculations.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Fine Chemistry, Seoul National Univ. of Sci. and Tech. (SNUT), Seoul, 01811, Korea
| | - Dongkyun Gil
- Department of Fine Chemistry, Seoul National Univ. of Sci. and Tech. (SNUT), Seoul, 01811, Korea.
| | - Cheal Kim
- Department of Fine Chemistry, Seoul National Univ. of Sci. and Tech. (SNUT), Seoul, 01811, Korea.
| |
Collapse
|
2
|
Zhong Y, Guo L, Lu Z, Wang D. 3-Aminophenylboronic acid-functionalized molybdenum disulfide quantum dots for fluorescent determination of hypochlorite. Mikrochim Acta 2022; 190:7. [PMID: 36471018 DOI: 10.1007/s00604-022-05598-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
A simple method is reported for hypochlorite determination based on fluorescence 3-aminophenylboronic acid-functionalized molybdenum disulfide quantum dots (B-MoS2 QDs). B-MoS2 QDs with strong fluorescence at 380 nm have been successfully synthesized by the amidation reaction between APBA and hydrothermal MoS2 QDs. Hypochlorite sensing was proposed utilizing the fluorescent quenching effect of 3,3',5,5'-tetramethylbenzidine dihydrochloride (TMB) on B-MoS2 QDs and the fast redox reaction between hypochlorite and TMB. The fluorescent quenching effect of TMB to B-MoS2 QDs was proved to be caused by static dynamic quenching and inner filter effect. A good linear relationship was obtained in the hypochlorite concentration range from 1 to 20 μM, and the limit of detection (LOD) was 36.8 nM. The proposed fluorescent detection assay was simple and fast, taking only 5 min at room temperature. Satisfactory results were obtained in the standard spike recovery tests on tap water and milk samples, which indicate high potential in constructing fluorescent bio-detection assays.
Collapse
Affiliation(s)
- Yaping Zhong
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China.
| | - Lijuan Guo
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China
| | - Zhentan Lu
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China.
| |
Collapse
|
3
|
Yang J, Guo R, Yang H, Wu L. Synthesis, determination, and bio-application in cellular and biomass-bamboo imaging of natural cinnamaldehyde derivatives. Front Bioeng Biotechnol 2022; 10:963128. [PMID: 36032717 PMCID: PMC9402932 DOI: 10.3389/fbioe.2022.963128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Cinnamon essential oil (CEO) is the main ingredient in the renewable biomass of cinnamon, which contains natural cinnamaldehyde. To valorize the value of cinnamaldehyde, two simple and useful compounds (1 and 2) from CEO were synthesized using a Schiff-base reaction and characterized by infrared spectra (IR), nuclear magnetic resonance (NMR), and high-resolution mass spectrometry (HRMS). Compound 1 was used to confirm the presence of Fe3+ and ClO− in solution, as well as compound 2. Using fluorescence enhancement phenomena, it offered practicable linear relationship of 1’s fluorescence intensity and Fe3+ concentrations: (0–8.0 × 10−5 mol/L), y = 36.232x + 45.054, R2 = 0.9947, with a limit of detection (LOD) of 0.323 μM, as well as compound 2. With increasing fluorescence, F404/F426 of 1 and the ClO− concentration (0–1.0 × 10−4 mol/L) also had a linear relationship: y = 0.0392x + 0.5545, R2 = 0.9931, LOD = 0.165 μM. However, the fluorescence intensity of 2 (596 nm) was quenched by a reduced concentration of ClO−, resulting in a linear. In addition, compounds 1 and 2 were used to image human astrocytoma MG (U-251), brain neuroblastoma (LN-229) cells, and bamboo tissue by adding Fe3+ or ClO−, with clear intracellular fluorescence. Thus, the two compounds based on CEO could be used to dye cells and bamboo tissues by fluorescence technology.
Collapse
Affiliation(s)
- Jinlai Yang
- China National Bamboo Research Center, Hangzhou, China
- Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou, China
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, Hangzhou, China
- National Longterm Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, China
- Bamboo Industry (Jian'ou) Branch, Fujian Provincial Collaborative Innovation Institute, Jian'ou, China
| | - Rencong Guo
- China National Bamboo Research Center, Hangzhou, China
- Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou, China
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, Hangzhou, China
- National Longterm Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, China
| | - Huimin Yang
- China National Bamboo Research Center, Hangzhou, China
- Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou, China
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, Hangzhou, China
- National Longterm Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, China
| | - Liangru Wu
- China National Bamboo Research Center, Hangzhou, China
- Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou, China
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, Hangzhou, China
- National Longterm Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, China
- Bamboo Industry (Jian'ou) Branch, Fujian Provincial Collaborative Innovation Institute, Jian'ou, China
- *Correspondence: Liangru Wu,
| |
Collapse
|