1
|
Dimonte S, Sikora V, Bove M, Morgese MG, Tucci P, Schiavone S, Trabace L. Social isolation from early life induces anxiety-like behaviors in adult rats: Relation to neuroendocrine and neurochemical dysfunctions. Biomed Pharmacother 2023; 158:114181. [PMID: 36592494 DOI: 10.1016/j.biopha.2022.114181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Subjects suffering from psychosis frequently experience anxiety. However, mechanisms underlying this comorbidity remain still unclear. We investigated whether neurochemical and neuroendocrine dysfunctions were involved in the development of anxiety-like behavior in a rodent model of psychotic-like symptoms, obtained by exposing male rats to social isolation rearing from postnatal day 21 to postnatal day 70. In the elevated zero maze test, isolated rats showed a significant reduction in the time spent in the open arms, as well as an increase in the time spent in the closed arms, compared to controls. An increased grooming time in the open field test was also observed in isolated animals. Isolation-induced anxiety-like behavior was accompanied by a decrease of plasmatic oxytocin, prolactin, ghrelin and melatonin levels, whereas plasmatic amount of Neuropeptide S was not altered. Social isolation also caused a reduction of noradrenaline, serotonin and GABA levels, together with an increase of serotonin turnover and glutamate levels in the amygdala of isolated animals. No significant differences were found in noradrenaline and serotonin levels, as well as in serotonin turnover in hippocampus, while glutamate amount was increased and GABA levels were reduced in isolated rats. Furthermore, there was a reduction in plasmatic serotonin content, and an increase in plasmatic kynurenine levels following social isolation, while no significant changes in serotonin turnover were observed. Taken together, our data provide novel insights in the neurobiological alterations underlying the comorbidity between psychosis and anxiety, and open new perspectives for multi-target therapies acting on both neurochemical and neuroendocrine pathways. DATA AVAILABILITY STATEMENT: The data presented in this study are available on request from the corresponding author.
Collapse
Affiliation(s)
- Stefania Dimonte
- Departement of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122, Foggia, Italy.
| | - Vladyslav Sikora
- Departement of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122, Foggia, Italy; Department of Pathology, Sumy State University, 2, Rymskogo-Korsakova st., Sumy 40007, Ukraine.
| | - Maria Bove
- Departement of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122, Foggia, Italy.
| | - Maria Grazia Morgese
- Departement of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122, Foggia, Italy.
| | - Paolo Tucci
- Departement of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122, Foggia, Italy.
| | - Stefania Schiavone
- Departement of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122, Foggia, Italy.
| | - Luigia Trabace
- Departement of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122, Foggia, Italy.
| |
Collapse
|
2
|
Ramon-Marquez T, Medina-Castillo AL, Fernandez-Gutierrez A, Fernandez-Sanchez JF. A novel optical biosensor for direct and selective determination of serotonin in serum by Solid Surface-Room Temperature Phosphorescence. Biosens Bioelectron 2016; 82:217-23. [PMID: 27085954 DOI: 10.1016/j.bios.2016.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/17/2016] [Accepted: 04/04/2016] [Indexed: 01/10/2023]
Abstract
This paper describes a novel biosensor which combines the use of nanotechnology (non-woven nanofibre mat) with Solid Surface-Room Temperature Phosphorescence (SS-RTP) measurement for the determination of serotonin in human serum. The developed biosensor is simple and can be directly applied in serum; only requires a simple clean-up protocol. Therefore it is the first time that serotonin is analysed directly in serum with a non-enzymatic technique. This new approach is based on the covalent immobilization of serotonin directly from serum on a functional nanofibre material (Tiss®-Link) with a preactivated surface for direct covalent immobilization of primary and secondary amines, and the subsequent measurement of serotonin phosphorescent emission from the solid surface. The phosphorescent detection allows avoiding the interference from any fluorescence emission or scattering light from any molecule present in the serum sample which can be also immobilised on the nanofibre material. The determination of serotonin with this SS-RTP sensor overcomes some limitations, such as large interference from the matrix and high cost and complexity of many of the methods widely used for serotonin analysis. The potential applicability of the sensor in the clinical diagnosis was demonstrated by analysing serum samples from seven healthy volunteers. The method was validated with an external reference laboratory, obtaining a correlation coefficient of 0.997 which indicates excellent correlation between the two methods.
Collapse
Affiliation(s)
- Teresa Ramon-Marquez
- Department of Analytical Chemistry, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain
| | - Antonio L Medina-Castillo
- NanoMyP®, Nanomateriales y Polimeros S.L., Spin-Off Company of the UGR, BIC Building, Avd. Innovacion 1, E-18016 Granada, Spain.
| | | | - Jorge F Fernandez-Sanchez
- Department of Analytical Chemistry, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain.
| |
Collapse
|
3
|
Brand T, Anderson GM. The Measurement of Platelet-Poor Plasma Serotonin:
A Systematic Review of Prior Reports and Recommendations for Improved Analysis. Clin Chem 2011; 57:1376-86. [DOI: 10.1373/clinchem.2011.163824] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND
Recent reports of new and important roles for serotonin (5-hydroxytryptamine, 5-HT) in the periphery have substantially increased interest in measuring peripheral serotonin. Nearly all circulating serotonin is found within platelets and this pool has been assessed by measuring serotonin in whole blood or in platelet-rich plasma. Measurement of the much smaller but potentially critically important pool of human free plasma serotonin in platelet-poor plasma (PPP) has proven much more difficult, with a wide range of reference values reported.
CONTENT
To characterize the available data we carried out a systematic literature search of previous reports of PPP serotonin and attempted to determine the best estimate of true PPP serotonin concentration in humans. A total of 101 published reports that included PPP serotonin values in healthy controls were found and included in the summary statistical analyses. The distribution of PPP serotonin values demonstrated high skewness (+1.98), and the reported values ranged from 0.6 to 179 nmol/L, with a mean of 31.6 nmol/L, an SD of 38.9 nmol/L, and a median of 14.8 nmol/L.
SUMMARY
Reported concentrations for human PPP or free plasma serotonin were highly discrepant, with most reports giving erroneously high values that should be disregarded. Inherent difficulties in selectively measuring the extremely low concentrations of serotonin present in PPP and in preparing PPP without contamination from platelet-derived serotonin contributed to the problem, as did the failure of researchers to compare their results with those from prior studies. There is a clear and pressing need for reference materials for the measurement of plasma (PPP) serotonin.
Collapse
Affiliation(s)
| | - George M Anderson
- Child Study Center and
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT
| |
Collapse
|