1
|
Song P, Zhang X, Wang S, Xu W, Wang F, Fu R, Wei F. Microbial proteases and their applications. Front Microbiol 2023; 14:1236368. [PMID: 37779686 PMCID: PMC10537240 DOI: 10.3389/fmicb.2023.1236368] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Proteases (proteinases or peptidases) are a class of hydrolases that cleave peptide chains in proteins. Endopeptidases are a type of protease that hydrolyze the internal peptide bonds of proteins, forming shorter peptides; exopeptidases hydrolyze the terminal peptide bonds from the C-terminal or N-terminal, forming free amino acids. Microbial proteases are a popular instrument in many industrial applications. In this review, the classification, detection, identification, and sources of microbial proteases are systematically introduced, as well as their applications in food, detergents, waste treatment, and biotechnology processes in the industry fields. In addition, recent studies on techniques used to express heterologous microbial proteases are summarized to describe the process of studying proteases. Finally, future developmental trends for microbial proteases are discussed.
Collapse
Affiliation(s)
- Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Xue Zhang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Shuhua Wang
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
| | - Wei Xu
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Fei Wang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Rongzhao Fu
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Feng Wei
- College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
2
|
Taivosalo A, Kriščiunaite T, Stulova I, Part N, Rosend J, Sõrmus A, Vilu R. Ripening of Hard Cheese Produced from Milk Concentrated by Reverse Osmosis. Foods 2019; 8:foods8050165. [PMID: 31096639 PMCID: PMC6560390 DOI: 10.3390/foods8050165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 11/22/2022] Open
Abstract
The application of reverse osmosis (RO) for preconcentration of milk (RO-milk) on farms can decrease the overall transportation costs of milk, increase the capacity of cheese production, and may be highly attractive from the cheese manufacturer’s viewpoint. In this study, an attempt was made to produce a hard cheese from RO-milk with a concentration factor of 1.9 (RO-cheese). Proteolysis, volatile profiles, and sensory properties were evaluated throughout six months of RO-cheese ripening. Moderate primary proteolysis took place during RO-cheese ripening: about 70% of αs1-casein and 45% of β-casein were hydrolyzed by the end of cheese maturation. The total content of free amino acids (FAA) increased from 4.3 to 149.9 mmol kg−1, with Lys, Pro, Glu, Leu, and γ-aminobutyric acid dominating in ripened cheese. In total, 42 volatile compounds were identified at different stages of maturation of RO-cheese; these compounds have previously been found in traditional Gouda-type and hard-type cheeses of prolonged maturation. Fresh RO-cheese was characterized by a milky and buttery flavor, whereas sweetness, saltiness, and umami flavor increased during ripening. Current results prove the feasibility of RO-milk for the production of hard cheese with acceptable sensory characteristics and may encourage further research and implementation of RO technology in cheese manufacture.
Collapse
Affiliation(s)
- Anastassia Taivosalo
- Center of Food and Fermentation Technologies, Akadeemia tee 15A, 12618 Tallinn, Estonia.
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - Tiina Kriščiunaite
- Center of Food and Fermentation Technologies, Akadeemia tee 15A, 12618 Tallinn, Estonia.
| | - Irina Stulova
- Center of Food and Fermentation Technologies, Akadeemia tee 15A, 12618 Tallinn, Estonia.
| | - Natalja Part
- Center of Food and Fermentation Technologies, Akadeemia tee 15A, 12618 Tallinn, Estonia.
| | - Julia Rosend
- Center of Food and Fermentation Technologies, Akadeemia tee 15A, 12618 Tallinn, Estonia.
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - Aavo Sõrmus
- Center of Food and Fermentation Technologies, Akadeemia tee 15A, 12618 Tallinn, Estonia.
| | - Raivo Vilu
- Center of Food and Fermentation Technologies, Akadeemia tee 15A, 12618 Tallinn, Estonia.
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| |
Collapse
|
3
|
Antihypertensive and Antioxidant Properties from Whey Protein Hydrolysates Produced by Encapsulated Bacillus subtilis Cells. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9714-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Taivosalo A, Kriščiunaite T, Seiman A, Part N, Stulova I, Vilu R. Comprehensive analysis of proteolysis during 8 months of ripening of high-cooked Old Saare cheese. J Dairy Sci 2017; 101:944-967. [PMID: 29174156 DOI: 10.3168/jds.2017-12944] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/03/2017] [Indexed: 11/19/2022]
Abstract
We applied capillary electrophoresis, liquid chromatography coupled with tandem mass-spectrometry (MS/MS), and ultra-performance liquid chromatography to determine the composition of water-insoluble and water-soluble proteinaceous fractions of the cheese and to study in detail the degradation of caseins during 8 mo of ripening of Estonian high-temperature cooked hard cheese Old Saare. The application of high-resolution and high-accuracy MS/MS enabled identification of more than 3,000 small peptides, representing a fairly full casein peptidome containing peptides of 4 to 25 AA in length: 1,049 from β-casein (CN), 944 from αS1-CN, 813 from αS2-CN, and 234 from κ-CN. The majority of β-CN- and αS1-CN-derived peptides originated from the N-terminal parts of the molecule, f6-93 and f1-124, respectively; peptides from αS2-CN arose predominantly from the C-terminal end f100-162. At the beginning of ripening, we found a relatively high amount of peptides originating from the glycomacropeptide part of κ-CN, whereas peptides from para-κ-CN prevailed during the later stages of ripening of the cheese. The cleavage patterns of β-CN, αS2-CN, as well as αS1-CN, showed that primary proteolysis was started mainly by plasmin, although a low proteolytic activity of chymosin was also evident. Based on the analysis of cleavage sites, we observed a significant participation of proteolytic enzymes, including amino- and carboxypeptidases, of both mesophilic and thermophilic starter bacteria in further hydrolysis of oligopeptides during the ripening. Several new phosphopeptides were detected in the result of MS/MS data analysis. The profiles of the estimated concentrations of phosphopeptides revealed that those originating from β-CN and αS1-CN accumulated during cheese maturation. In contrast, we did not notice any generation of phosphopeptides from the highly phosphorylated part of αS2-CN, f25-80, presumably due to the inaccessibility of this region to the action of plasmin and chymosin. The analysis of cleavage sites and the combination of principal component and clustering analyses provided a characterization of the complex dynamics of formation and degradation of peptides during cheese maturation. We made an attempt to obtain a comprehensive picture of proteolysis during Old Saare cheese ripening on the basis of the detailed peptidomic data, including also the less abundant peptides determined by MS/MS, and complemented by the data on intact caseins and free AA and reported the results in the paper.
Collapse
Affiliation(s)
- A Taivosalo
- Center of Food and Fermentation Technologies, Akadeemia tee 15A, 12618 Tallinn, Estonia; Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - T Kriščiunaite
- Center of Food and Fermentation Technologies, Akadeemia tee 15A, 12618 Tallinn, Estonia
| | - A Seiman
- Center of Food and Fermentation Technologies, Akadeemia tee 15A, 12618 Tallinn, Estonia; Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - N Part
- Center of Food and Fermentation Technologies, Akadeemia tee 15A, 12618 Tallinn, Estonia
| | - I Stulova
- Center of Food and Fermentation Technologies, Akadeemia tee 15A, 12618 Tallinn, Estonia
| | - R Vilu
- Center of Food and Fermentation Technologies, Akadeemia tee 15A, 12618 Tallinn, Estonia; Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| |
Collapse
|
5
|
Abstract
In the past years, capillary electrophoresis has become a frequently used technique for enzyme assays due to the high separation efficiency and versatility as well as small sample size and low consumption of chemicals. The capillary electrophoresis assays can be divided into two general categories: pre-capillary (or offline) assays and in-capillary (or online) assays. In pre-capillary assays, the incubation is performed offline and substrate(s) and product(s) are subsequently analyzed by capillary electrophoresis. In in-capillary assays enzyme reaction and separation of the analytes are performed inside the same capillary. In such assays the enzyme is either immobilized or in solution. The latter techniques is also referred to as electrophoretically mediated microanalysis (EMMA) indicating that the individual steps of the incubation as well as analysis are performed via electrophoretic phenomena. This chapter describes both techniques using the deacetylation of acetyl-lysine residues in model peptides by sirtuin enzymes as well as the hydrolysis of acetylthiocholine by acetylcholinesterase as examples.
Collapse
Affiliation(s)
- Gerhard K E Scriba
- Department of Pharmaceutical Chemistry, School of Pharmacy, Friedrich Schiller University, Jena, Germany.
| | | | | | | |
Collapse
|
6
|
Purification and characterization of Bacillus subtilis milk-clotting enzyme from Tibet Plateau and its potential use in yak dairy industry. Eur Food Res Technol 2012. [DOI: 10.1007/s00217-012-1663-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Fan Y, Scriba GKE. Advances in capillary electrophoretic enzyme assays. J Pharm Biomed Anal 2010; 53:1076-90. [PMID: 20439145 DOI: 10.1016/j.jpba.2010.04.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/26/2010] [Accepted: 04/05/2010] [Indexed: 01/25/2023]
Abstract
In recent years, capillary electrophoresis (CE) has become a frequently used tool for enzyme assays due to its well-recognized advantages such as high separation efficiency, short analysis time, small sample and chemicals consumption. The published applications cover all aspects of enzyme characterization and analysis including the determination of the enzyme activity, substrate and modulator characterization and identification, as well as the investigation of enzyme-mediated metabolic pathways of bioactive molecules. The CE assays may be classified into two general categories: (1) pre-capillary assays where the reactions are performed offline followed by CE analysis of the substrates and products and (2) online assays when the enzyme reaction and separation of the analytes are performed in the same capillary. In online assays, the enzyme may be either immobilized or in solution. The latter is also referred to as electrophoretically mediated microanalysis (EMMA). The present review will highlight the literature of CE-based enzyme assays from 2006 to November 2009. One section will be devoted to applications of microfluidic devices.
Collapse
Affiliation(s)
- Yi Fan
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Jena, Philosophenweg 14, D-07743 Jena, Germany
| | | |
Collapse
|