1
|
Sionek B, Okoń A, Łepecka A, Zielińska D, Jaworska D, Kajak-Siemaszko K, Neffe-Skocińska K, Trząskowska M, Karbowiak M, Szymański P, Dolatowski ZJ, Kołożyn-Krajewska D. The Role of Autochthonous Levilactobacillus brevis B1 Starter Culture in Improving the Technological and Nutritional Quality of Cow's Milk Acid-Rennet Cheeses-Industrial Model Study. Foods 2024; 13:392. [PMID: 38338527 PMCID: PMC10855195 DOI: 10.3390/foods13030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
In the study, an attempt was made to develop an innovative technology for cheese manufacturing. It was hypothesized that selected autochthonous lactic acid bacteria as a starter culture are more suitable for the production of acid-rennet cheeses of good technological and sensory quality. The study aimed to assess the possibility of using the strain Levilactobacillus brevis B1 (L. brevis B1) as a starter culture to produce acid-rennet cheeses using raw cow's milk. Two variants of cheese were manufactured. The control variant (R) was coagulated with microbial rennet and buttermilk, and the other variant (B1) was inoculated with rennet and L. brevis B1 starter culture. The effect of the addition of these autochthonous lactic acid bacteria on selected physicochemical characteristics, durability, the composition of fatty acids, cholesterol, Iipid Quality Indices, and microbiological and sensory quality of acid-rennet cheeses was determined during a 3-month period of storage. The dominant fatty acids observed in the tested cheeses were saturated fatty acids (SFA) (68.43-69.70%) and monounsaturated fatty acids (MUFA) (25.85-26.55%). Significantly higher polyunsaturated fatty acid (PUFA) content during storage was observed for B1 cheeses. The B1 cheeses were characterized by lower cholesterol content compared to cheese R and showed better indexes, including the Index of atherogenicity, Index of thrombogenicity, DFA, OFA, H/H, and HPI indexes, than the R cheese. No effect of the tested L. brevis B1 on sensory quality was observed in relation to the control cheeses during 3 months of storage. The results of the research indicate the possibility of using the L. brevis B1 strain for the production of high-quality, potentially probiotic acid-rennet cheeses.
Collapse
Affiliation(s)
- Barbara Sionek
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland; (D.Z.); (D.J.); (K.K.-S.); (K.N.-S.); (M.T.); (M.K.); (D.K.-K.)
| | - Anna Okoń
- Department of Meat and Fat Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St, 02-532 Warsaw, Poland; (A.O.); (A.Ł.); (P.S.); (Z.J.D.)
| | - Anna Łepecka
- Department of Meat and Fat Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St, 02-532 Warsaw, Poland; (A.O.); (A.Ł.); (P.S.); (Z.J.D.)
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland; (D.Z.); (D.J.); (K.K.-S.); (K.N.-S.); (M.T.); (M.K.); (D.K.-K.)
| | - Danuta Jaworska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland; (D.Z.); (D.J.); (K.K.-S.); (K.N.-S.); (M.T.); (M.K.); (D.K.-K.)
| | - Katarzyna Kajak-Siemaszko
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland; (D.Z.); (D.J.); (K.K.-S.); (K.N.-S.); (M.T.); (M.K.); (D.K.-K.)
| | - Katarzyna Neffe-Skocińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland; (D.Z.); (D.J.); (K.K.-S.); (K.N.-S.); (M.T.); (M.K.); (D.K.-K.)
| | - Monika Trząskowska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland; (D.Z.); (D.J.); (K.K.-S.); (K.N.-S.); (M.T.); (M.K.); (D.K.-K.)
| | - Marcelina Karbowiak
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland; (D.Z.); (D.J.); (K.K.-S.); (K.N.-S.); (M.T.); (M.K.); (D.K.-K.)
| | - Piotr Szymański
- Department of Meat and Fat Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St, 02-532 Warsaw, Poland; (A.O.); (A.Ł.); (P.S.); (Z.J.D.)
| | - Zbigniew J. Dolatowski
- Department of Meat and Fat Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St, 02-532 Warsaw, Poland; (A.O.); (A.Ł.); (P.S.); (Z.J.D.)
| | - Danuta Kołożyn-Krajewska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland; (D.Z.); (D.J.); (K.K.-S.); (K.N.-S.); (M.T.); (M.K.); (D.K.-K.)
| |
Collapse
|
2
|
Fontes AL, Pimentel LL, Monteiro MJP, Domingues MR, Rodríguez-Alcalá LM, Gomes AM. Microbial Conjugated Linolenic Acid-Enriched Fermented Milk Using Lipase-Hydrolyzed Flaxseed Oil: Biochemical, Organoleptic and Storage Traits. Foods 2023; 13:21. [PMID: 38201050 PMCID: PMC10777994 DOI: 10.3390/foods13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The bioactive conjugated linolenic acid (CLNA) can be microbiologically produced by different probiotic strains when in the presence of α-linolenic acid (α-LNA). Food matrices are a good vector, such as has been previously demonstrated with fermented milk enriched with microbial CLNA by Bifidobacterium breve DSM 20091 from lipase-hydrolyzed flaxseed oil. The aim of the present work was to further assess the nutritional, biochemical and organoleptic properties of the developed dairy product, as well as its storage stability throughout 28 days at 4 °C, proving its suitability for consumption. Milk lactose hydrolyzed into glucose (0.89 g/100 g) and galactose (0.88 g/100 g), which were further metabolized into lactic (0.42 g/100 g), acetic (0.44 g/100 g) and propionic (0.85 g/100 g) acids. Titratable acidity reached 0.69% and pH 4.93. Compared with the control (no CLNA), fat content was slightly higher (2.0 g/100 g). Acetic acid was the major volatile (83.32%), lacking important dairy flavor contributors, like acetaldehyde. Sensory analysis revealed predominant astringency and bitterness. No microbial concerns arose during storage, but the CLNA content increased, and some saturated fatty acids seemed to oxidize. In conclusion, the CLNA-enriched fermented milk revealed reasonable compositional properties, yet further improvements are needed for optimal consumer acceptance and a prolonged shelf-life.
Collapse
Affiliation(s)
- Ana Luiza Fontes
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.L.F.); (L.L.P.); (M.J.P.M.); (A.M.G.)
- Laboratório Associado para a Química Verde—LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Lígia L. Pimentel
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.L.F.); (L.L.P.); (M.J.P.M.); (A.M.G.)
| | - Maria João P. Monteiro
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.L.F.); (L.L.P.); (M.J.P.M.); (A.M.G.)
| | - M. Rosário Domingues
- Centro de Espectrometria de Massa, LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Luis Miguel Rodríguez-Alcalá
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.L.F.); (L.L.P.); (M.J.P.M.); (A.M.G.)
| | - Ana Maria Gomes
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.L.F.); (L.L.P.); (M.J.P.M.); (A.M.G.)
| |
Collapse
|
3
|
Zhu C, Cheng Y, Shi Q, Ge X, Yang Y, Huang Y. Metagenomic analyses reveal microbial communities and functional differences between Daqu from seven provinces. Food Res Int 2023; 172:113076. [PMID: 37689857 DOI: 10.1016/j.foodres.2023.113076] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/28/2023] [Accepted: 05/29/2023] [Indexed: 09/11/2023]
Abstract
Microbial communities perform the brewing function in Daqu. Macrogenomics and PICRUST II analyses revealed the differences in microbes and metabolic functions among Daqu from the seven Baijiu-producing provinces. Jiang-flavored Daqu (Guizhou, Shandong, and Hubei provinces) generally forms an aroma-producing functional microbiota with Kroppenstedtia, Bacillus, Thermoascus, Virgibacillus, and Thermomyces as the core, which promotes the metabolism of various amino acids and aroma compounds. Light-flavored Daqu (Shanxi Province) enriched the Saccharomycopsis, Saccharomyces, and lactic acid bacteria (LAB) microbiota through low-temperature fermentation. These microbes can synthesize alcohol and lactic acid but inhibit amino acid metabolism within the Light-flavored Daqu. Bifidobacterium and Saccharomycopsis were dominant in the Tao-flavored Daqu (Henan province). This unique microbial structure is beneficial for pyruvate fermentation to lactate. Research also found that Strong-flavored Daqu from Jiangsu and Sichuan provinces differed significantly. The microbial communities and metabolic pathways within Jiangsu Daqu were similar to those within Jiang-flavored Daqu, but Sichuan Daqu was dominated by Thermoascus, LAB, and Thermoactinomyces. In addition, Spearman correlation analysis indicated that Kroppenstedtia, Bacillus, and Thermomyces were not only positively related to flavor metabolism but also negatively correlated with Saccharomycopsis. This research will help establish a systematic understanding of the microbial community and functional characteristics in Daqu.
Collapse
Affiliation(s)
- Chutian Zhu
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, China
| | - Yuxin Cheng
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qili Shi
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiangyang Ge
- Yanghe Distillery Co., Ltd., Suqian, Jiangsu 223800, China
| | - Yong Yang
- Yanghe Distillery Co., Ltd., Suqian, Jiangsu 223800, China
| | - Yongguang Huang
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, China
| |
Collapse
|
4
|
Boonprab K. Rice flour powder carrying mixed starter culture of Lactiplantibacillus plantarum KU-LM173 and Pediococcus acidilactici KU-LM145 for fermented mussel, Perna viridis Linnaeus 1758. J Appl Microbiol 2021; 132:1197-1209. [PMID: 34464988 DOI: 10.1111/jam.15270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/11/2021] [Accepted: 08/27/2021] [Indexed: 11/26/2022]
Abstract
AIMS To develop a dried rice flour powder (DP) formulation to contain a lactic acid bacterial starter culture for fermenting mussel meat (FM). METHODS AND RESULTS Lactiplantibacillus plantarum KU-LM173 (LP), Enterococcus hirae KU-LM174 and Pediococcus acidilactici KU-LM145 (PA) were selected from commercial FMs and identified to have high acid and protease production. Mixed culture between LP, for high acid production, and PA, for the flavour, was the best for DP and had greater organoleptic properties than a single starter fermentation. The best ratio of DP for production was 1% of the mussel weight, while the highest numeric scoring of the organoleptic test between 3% and 6%. The starter culture fermentation accelerated over the natural (wild) fermentation and ended at day 3. The shelf life of the product was at least 30 days at 30-35°C with no pathogens detected. The shelf life of DP at 4°C was 10 weeks. CONCLUSIONS DP with the best strains and long shelf life promoted safety of FM and reduced the processing time. High consumer acceptance, protease and acid production and flavour were unique product characteristics. SIGNIFICANCE AND IMPACT OF STUDY Accelerated commercial FMs with effective DP formulation for the industrial sector may be plausible.
Collapse
Affiliation(s)
- Kangsadan Boonprab
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
5
|
Characterization of lactic acid bacterial communities associated with a traditional Colombian cheese: Double cream cheese. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.03.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Escobar M, Van Tassell M, Martínez-Bustos F, Singh M, Castaño-Tostado E, Amaya-Llano S, Miller M. Characterization of a Panela cheese with added probiotics and fava bean starch. J Dairy Sci 2012; 95:2779-87. [DOI: 10.3168/jds.2011-4655] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 01/12/2012] [Indexed: 11/19/2022]
|
7
|
Harper WJ, Kocaoglu-Vurma NA, Wick C, Elekes K, Langford V. Analysis of Volatile Sulfur Compounds in Swiss Cheese Using Selected Ion Flow Tube Mass Spectrometry (SIFT-MS). ACS SYMPOSIUM SERIES 2011. [DOI: 10.1021/bk-2011-1068.ch008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- W. James Harper
- The Ohio State University, Department of Food Science and Technology, Columbus, Ohio 43210, USA
- Syft Technologies, Christchurch, New Zealand
| | - Nurdan A. Kocaoglu-Vurma
- The Ohio State University, Department of Food Science and Technology, Columbus, Ohio 43210, USA
- Syft Technologies, Christchurch, New Zealand
| | - Cheryl Wick
- The Ohio State University, Department of Food Science and Technology, Columbus, Ohio 43210, USA
- Syft Technologies, Christchurch, New Zealand
| | - Karen Elekes
- The Ohio State University, Department of Food Science and Technology, Columbus, Ohio 43210, USA
- Syft Technologies, Christchurch, New Zealand
| | - Vaughan Langford
- The Ohio State University, Department of Food Science and Technology, Columbus, Ohio 43210, USA
- Syft Technologies, Christchurch, New Zealand
| |
Collapse
|