1
|
France TC, Kennedy E, O'Regan J, Goulding DA. Current perspectives on the use of milk fat globule membrane in infant milk formula. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39428709 DOI: 10.1080/10408398.2024.2417791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Sources of milk fat globule membrane (MFGM) are desirable to include in infant milk formula (IMF) to mimic the composition and functionality of human milk MFGM. MFGM in its natural form consists of a trilayer structure containing lipids (e.g., cholesterol, phospholipids, gangliosides, ceramides), proteins (e.g., butyrophilin, xanthine oxidase, mucin-1, adipophilin) and glycans (e.g., sialic acid). Components of MFGM have been associated with various biological benefit areas including intestinal, neurocognitive, and immune health. There are many aspects to consider when supplementing IMF with MFGM ingredients, of which the major ones are highlighted and critiqued in this review from an industrial research perspective. Features include compositional unknowns, discussion on how best to incorporate MFGM to IMF, analytical method needs, biological function unknowns, and considerations on how best to communicate MFGM in different contexts. It is hoped that by identifying the key scientific gaps outstanding in this subject area, collective efforts can proceed to ensure the potential impact of MFGM on infant health is realized.
Collapse
Affiliation(s)
- Thomas C France
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| | - Elaine Kennedy
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| | - Jonathan O'Regan
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| | - David A Goulding
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| |
Collapse
|
2
|
Strickland JM, Leite de Campos J, Gandy J, Mavangira V, Ruegg PL, Sordillo L. A randomized control trial to test the effect of pegbovigrastim treatment at dry-off on plasma and milk oxylipid profiles during early mammary gland involution and the postparturient period. J Dairy Sci 2024; 107:5070-5089. [PMID: 38246537 DOI: 10.3168/jds.2023-23879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024]
Abstract
The early period of mammary gland involution is a critical juncture in the lactation cycle that can have significant effects on milk production and mammary gland health. Pegbovigrastim (PEG) administered 1 wk prior and on the day of parturition can enhance immune function and reduce the incidence of mastitis in the early postpartum period. Oxylipids are potent metabolites of polyunsaturated fatty acids (PUFA) and are important mediators of inflammation. The objective of this study was to evaluate effects of PEG given 1 wk before and at the day of dry-off (D0) on concentrations of oxylipids in plasma and milk from 7 d before D0 to 14 d after, as well as the effects during the first 14 d of the subsequent lactation. We hypothesized that both pro- and anti-inflammatory oxylipids would vary based on initiation of mammary gland involution and that pegbovigrastim would affect oxylipid concentrations, particularly those related to leukocytes. A complete randomized blocked design was used to enroll cows into either a PEG treatment group (n = 10) or control group (n = 10; CON). Blood samples were collected -7, -2, -1, 0, 1, 2, 4, 7, and 14 d relative to dry-off and 5, 10, and 14 d postcalving. Samples were analyzed for PUFA and oxylipids in milk and plasma by ultra-performance mass spectrometry and liquid chromatography tandem quadrupole mass spectrometry, respectively. Overall, 30 lipid mediators were measured in both milk and plasma. Repeated measures analyses revealed a significant interaction of treatment by time for milk 8-iso-keto-15-prostaglandin E2, prostaglandin F2α, plasma 8,12-iso-prostaglandin Fα-VI, 11-hydroxyeicosatetraenoic acid, and 12-hydroxyheptadecatienoic acid. The majority of milk PUFA and oxylipids differed significantly during early mammary gland involution and into the early postpartum period. This study demonstrated changes in oxylipids in milk secretions and plasma during early involution, and further investigation may illuminate multiple complex processes and reveal targets for optimization of mammary gland involution.
Collapse
Affiliation(s)
- Jaimie M Strickland
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824.
| | - Juliana Leite de Campos
- College of Agriculture and Natural Resources, Animal Science, Michigan State University, East Lansing, MI 48824
| | - Jeff Gandy
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824
| | - Vengai Mavangira
- College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Pamela L Ruegg
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824
| | - Lorraine Sordillo
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
3
|
Dekker PM, Boeren S, Saccenti E, Hettinga KA. Network analysis of the proteome and peptidome sheds light on human milk as a biological system. Sci Rep 2024; 14:7569. [PMID: 38555284 PMCID: PMC10981717 DOI: 10.1038/s41598-024-58127-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
Proteins and peptides found in human milk have bioactive potential to benefit the newborn and support healthy development. Research has been carried out on the health benefits of proteins and peptides, but many questions still need to be answered about the nature of these components, how they are formed, and how they end up in the milk. This study explored and elucidated the complexity of the human milk proteome and peptidome. Proteins and peptides were analyzed with non-targeted nanoLC-Orbitrap-MS/MS in a selection of 297 milk samples from the CHILD Cohort Study. Protein and peptide abundances were determined, and a network was inferred using Gaussian graphical modeling (GGM), allowing an investigation of direct associations. This study showed that signatures of (1) specific mechanisms of transport of different groups of proteins, (2) proteolytic degradation by proteases and aminopeptidases, and (3) coagulation and complement activation are present in human milk. These results show the value of an integrated approach in evaluating large-scale omics data sets and provide valuable information for studies that aim to associate protein or peptide profiles from biofluids such as milk with specific physiological characteristics.
Collapse
Affiliation(s)
- Pieter M Dekker
- Food Quality and Design Group, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| | - Kasper A Hettinga
- Food Quality and Design Group, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands.
| |
Collapse
|
4
|
Zhang T, Yang Y, Zeng X, Wu Z, Pan D, Luo H, Tao M, Guo Y. Protective mechanism of milk fat globule membrane proteins on Lactobacillus acidophilus CICC 6074 under acid stress based on proteomic analysis. Food Chem 2024; 434:137297. [PMID: 37741242 DOI: 10.1016/j.foodchem.2023.137297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/25/2023]
Abstract
The prerequisite for lactic acid bacteria to perform their probiotic function is that they could survive the acid-stressed environment of production and application. In this experiment, the protective mechanism of milk fat globule membrane (MFGM) proteins on lactic acid bacteria under acid stress was investigated. Scanning electron microscopy and fluorescence probe were used to analyze the condition of the acid-treated bacteria, which showed that MFGM proteins could enhance the survival ability of Lactobacillus acidophilus CICC 6074 under acid stress by maintaining cell morphology, elevating intracellular pH and H+-ATPase activity. Furthermore, Tandem Mass Tags (TMT) proteomic analysis revealed that MFGM protein could exert protective effects on L. acidophilus CICC 6074 by regulating amino acid metabolism, ATPase activity, peptidoglycan synthesis, gene repair and heritage, etc. The results will provide a new approach for the protection and development of functional lactic acid bacteria.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Yujie Yang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Haibo Luo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Mingxuan Tao
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Yuxing Guo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
5
|
Garhwal R, Sangwan K, Mehra R, Kumar N, Bhardwaj A, Pal Y, Buttar HS, Kumar H. A Systematic Review of the Bioactive Components, Nutritional Qualities and Potential Therapeutic Applications of Donkey Milk. J Equine Vet Sci 2022; 115:104006. [DOI: 10.1016/j.jevs.2022.104006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/03/2022] [Indexed: 01/05/2023]
|
6
|
Different processed milk with residual xanthine oxidase activity and risk of increasing serum uric acid level. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
|
8
|
Zanabria R, Griffiths MW, Corredig M. Does structure affect biological function? Modifications to the protein and phospholipids fraction of the milk fat globule membrane after extraction affect the antiproliferative activity of colon cancer cells. J Food Biochem 2019; 44:e13104. [PMID: 31808955 DOI: 10.1111/jfbc.13104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 11/30/2022]
Abstract
In this work, the known antiproliferative activity of the untreated milk fat globule membrane (MFGM) against human colon cancer cells was employed to test the hypothesis that the supramolecular structure of the MFGM is of important biological significance. The results indicated that there is a relationship between the extent of thermal denaturation and the loss of antiproliferative capacity. There was also a clear reduction of the biological activity, when the MFGM was treated by hydrolysis using trypsin or phospholipase A2 , enzymes specific either for the protein or the phospholipids components present in the MFGM. It was concluded that the bioactivity of the MFGM can not be explained only by the presence of bioactive components, but that their structural organization plays a critical role in the antiproliferative activities of the extracts. PRACTICAL APPLICATIONS: The milk fat globule membrane (MFGM) is characterized by a complex composition and structure, with biological significance. It is known that with processing, the composition of the MFGM is modified, due to protein-protein interactions at the interface. In this work, the MFGM was isolated from untreated milk and while maintaining its overall composition, its molecular and supramolecular structures were modified using heating or specific hydrolysis to the protein or phospholipids' components. All targeted modifications affected the bioefficacy of the MFGM against colon cancer cells, thus demonstrating the importance of processing history on the functionality of the MFGM.
Collapse
Affiliation(s)
- Romina Zanabria
- Food Science Department, University of Guelph, Guelph, ON, Canada.,Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, ON, Canada
| | - Mansel W Griffiths
- Food Science Department, University of Guelph, Guelph, ON, Canada.,Canadian Research Institute for Food Safety (CRIFS), University of Guelph, Guelph, ON, Canada
| | - Milena Corredig
- Food Science Department, University of Guelph, Guelph, ON, Canada.,Food Science Department, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Alshehab M, Reis MG, Day L, Nitin N. Milk fat globules, a novel carrier for delivery of exogenous cholecalciferol. Food Res Int 2019; 126:108579. [PMID: 31732024 DOI: 10.1016/j.foodres.2019.108579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/28/2019] [Accepted: 07/24/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Maha Alshehab
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616, United States.
| | | | - Li Day
- AgResearch Grasslands, Palmerston North 4442, New Zealand.
| | - Nitin Nitin
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616, United States; Department of Biological and Agricultural Engineering, University of California-Davis, Davis, CA 95616, United States.
| |
Collapse
|
10
|
Verma A, Ghosh T, Bhushan B, Packirisamy G, Navani NK, Sarangi PP, Ambatipudi K. Characterization of difference in structure and function of fresh and mastitic bovine milk fat globules. PLoS One 2019; 14:e0221830. [PMID: 31465429 PMCID: PMC6715232 DOI: 10.1371/journal.pone.0221830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/15/2019] [Indexed: 11/22/2022] Open
Abstract
Characterization of milk fat globule (MFG) was performed to investigate the difference in MFG membrane (MFGM) between fresh and mastitis Holstein Friesian cow milk. Lipid distribution investigated by exogenous phospholipids using microscopy showed higher phospholipid content in fresh compared to mastitic MFGM. Xanthine oxidase assay indicative of membrane impairment revealed lower activity in mastitic samples compared to fresh globules. Of note, significantly higher roughness of globule surface and zeta potential was observed in mastitis compared to fresh globules. Influence of globule membrane on the interaction with L. fermentum demonstrated preferential adhesion of bacteria to fresh compared to mastitic globules including enhanced extent of binding. Results of the present study provides an insight of the interfacial changes occurring at the globule surface as well as highlighting the importance of selective bacterial interaction with milk components for the potential development of functional food with relevance to human health.
Collapse
Affiliation(s)
- Aparna Verma
- Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | - Tamoghna Ghosh
- Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | - Bharat Bhushan
- Center for Nanotechnology, Indian Institute of Technology, Roorkee, India
| | - Gopinath Packirisamy
- Department of Biotechnology, Indian Institute of Technology, Roorkee, India
- Center for Nanotechnology, Indian Institute of Technology, Roorkee, India
| | - Naveen K. Navani
- Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | - Pranita P. Sarangi
- Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | - Kiran Ambatipudi
- Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| |
Collapse
|
11
|
Luo J, Wang Z, Li Y, Chen C, Ren F, Guo H. The simulated in vitro infant gastrointestinal digestion of droplets covered with milk fat globule membrane polar lipids concentrate. J Dairy Sci 2019; 102:2879-2889. [DOI: 10.3168/jds.2018-15044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/07/2018] [Indexed: 12/30/2022]
|
12
|
Ortega-Anaya J, Jiménez-Flores R. Symposium review: The relevance of bovine milk phospholipids in human nutrition—Evidence of the effect on infant gut and brain development. J Dairy Sci 2019; 102:2738-2748. [DOI: 10.3168/jds.2018-15342] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/18/2018] [Indexed: 12/25/2022]
|
13
|
Singh H. Symposium review: Fat globules in milk and their structural modifications during gastrointestinal digestion. J Dairy Sci 2019; 102:2749-2759. [DOI: 10.3168/jds.2018-15507] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/12/2018] [Indexed: 11/19/2022]
|
14
|
Alshehab M, Nitin N. Encapsulation and release of curcumin using an intact milk fat globule delivery system. Food Funct 2019; 10:7121-7130. [DOI: 10.1039/c9fo00489k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Milk fat globule carriers were evaluated as an encapsulation system for curcumin. Partitioning is confirmed using fluorescence imaging. Release of curcumin under simulated gastrointestinal conditions and associated morphological changes to the carriers were evaluated.
Collapse
Affiliation(s)
- Maha Alshehab
- Department of Food Science and Technology
- University of California-Davis
- Davis
- USA
| | - Nitin Nitin
- Department of Food Science and Technology
- University of California-Davis
- Davis
- USA
- Department of Biological and Agricultural Engineering
| |
Collapse
|
15
|
Ali AH. Current knowledge of buttermilk: Composition, applications in the food industry, nutritional and beneficial health characteristics. INT J DAIRY TECHNOL 2018. [DOI: 10.1111/1471-0307.12572] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Abdelmoneim H Ali
- Department of Food Science Faculty of Agriculture Zagazig University 44511 Zagazig Egypt
| |
Collapse
|
16
|
Lee H, Padhi E, Hasegawa Y, Larke J, Parenti M, Wang A, Hernell O, Lönnerdal B, Slupsky C. Compositional Dynamics of the Milk Fat Globule and Its Role in Infant Development. Front Pediatr 2018; 6:313. [PMID: 30460213 PMCID: PMC6232911 DOI: 10.3389/fped.2018.00313] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022] Open
Abstract
Human milk is uniquely optimized for the needs of the developing infant. Its composition is complex and dynamic, driven primarily by maternal genetics, and to a lesser extent by diet and environment. One important component that is gaining attention is the milk fat globule (MFG). The MFG is composed of a triglyceride-rich core surrounded by a tri-layer membrane, also known as the milk fat globule membrane (MFGM) that originates from mammary gland epithelia. The MFGM is enriched with glycerophospholipids, sphingolipids, cholesterol, and proteins, some of which are glycosylated, and are known to exert numerous biological roles. Mounting evidence suggests that the structure of the MFG and bioactive components of the MFGM may benefit the infant by aiding in the structural and functional maturation of the gut through the provision of essential nutrients and/or regulating various cellular events during infant growth and immune education. Further, antimicrobial peptides and surface carbohydrate moieties surrounding the MFG might have a pivotal role in shaping gut microbial populations, which in turn may promote protection against immune and inflammatory diseases early in life. This review seeks to: (1) understand the components of the MFG, as well as maternal factors including genetic and lifestyle factors that influence its characteristics; (2) examine the potential role of this milk component on the intestinal immune system; and (3) delineate the mechanistic roles of the MFG in infant intestinal maturation and establishment of the microbiota in the alimentary canal.
Collapse
Affiliation(s)
- Hanna Lee
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Emily Padhi
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Yu Hasegawa
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Jules Larke
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Mariana Parenti
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Aidong Wang
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Olle Hernell
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Carolyn Slupsky
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
17
|
Investigation of the neurotrophic effect of dairy phospholipids on cortical neuron outgrowth and stimulation. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
18
|
The interfacial properties of various milk fat globule membrane components using Langmuir isotherms. FOOD BIOSCI 2017. [DOI: 10.1016/j.fbio.2017.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Ripollés D, Parrón JA, Fraguas J, Calvo M, Pérez MD, Sánchez L. Determination of lactadherin concentration in dairy by-products by ELISA: Effect of heat treatment and hydrolysis. J Dairy Sci 2017; 101:912-923. [PMID: 29153516 DOI: 10.3168/jds.2017-13608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/27/2017] [Indexed: 11/19/2022]
Abstract
Lactadherin is a peripheral glycoprotein of the milk fat globule membrane with several attributed biological activities. In this study, we developed an indirect competitive ELISA to determine lactadherin concentration by using a rabbit polyclonal antiserum. The ELISA was applied to quantify lactadherin in several dairy by-products. Of the products tested, raw and commercial buttermilk had the highest concentrations of lactadherin (6.79 and 5.27 mg/g of product, respectively), followed by commercial butter serum (4.86 mg/g), commercial skim milk (4.84 mg/g), and raw whey (1.20 mg/g). The concentration of immunoreactive lactadherin was also determined in dairy by-products after they were subjected to different technological treatments. Thus, raw products were heat treated at combinations of temperature and time typically used in the dairy industry, and commercial products were hydrolyzed using 3 proteolytic enzyme preparations. Heat treatments of whey and buttermilk resulted in a smaller decrease in lactadherin concentration than did hydrolysis as determined by ELISA and electrophoresis. At high temperatures for long durations, the loss of lactadherin was higher in whey than in buttermilk, with the maximal reduction of around 48% found after treating whey at 72°C for 60 min. Hydrolysis of commercial products with proteolytic enzymes resulted in a marked decrease of immunoreactivity within the first 5 min of treatment, which thereafter was constant throughout 4 h of hydrolysis. These results demonstrate that dairy by-products from milk fat processing are good natural sources of lactadherin, although technological processes have to be considered, because they have different effects on lactadherin content.
Collapse
Affiliation(s)
- Daniel Ripollés
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - José A Parrón
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Javier Fraguas
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Miguel Calvo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - María D Pérez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Lourdes Sánchez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain.
| |
Collapse
|
20
|
Natural and processed milk and oil body emulsions: Bioavailability, bioaccessibility and functionality. FOOD STRUCTURE-NETHERLANDS 2017. [DOI: 10.1016/j.foostr.2016.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
|
22
|
Holzmüller W, Kulozik U. Isolation of milk fat globule membrane (MFGM) material by coagulation and diafiltration of buttermilk. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Holzmüller W, Kulozik U. Technical difficulties and future challenges in isolating membrane material from milk fat globules in industrial settings – A critical review. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.03.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Holzmüller W, Müller M, Himbert D, Kulozik U. Impact of cream washing on fat globules and milk fat globule membrane proteins. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Holzmüller W, Kulozik U. Quantification of MFGM proteins in buttermilk and butter serum by means of a stain free SDS-PAGE method. J Food Compost Anal 2016. [DOI: 10.1016/j.jfca.2016.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Yang M, Cong M, Peng X, Wu J, Wu R, Liu B, Ye W, Yue X. Quantitative proteomic analysis of milk fat globule membrane (MFGM) proteins in human and bovine colostrum and mature milk samples through iTRAQ labeling. Food Funct 2016; 7:2438-50. [PMID: 27159491 DOI: 10.1039/c6fo00083e] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Milk fat globule membrane (MFGM) proteins have many functions. To explore the different proteomics of human and bovine MFGM, MFGM proteins were separated from human and bovine colostrum and mature milk, and analyzed by the iTRAQ proteomic approach. A total of 411 proteins were recognized and quantified. Among these, 232 kinds of differentially expressed proteins were identified. These differentially expressed proteins were analyzed based on multivariate analysis, gene ontology (GO) annotation and KEGG pathway. Biological processes involved were response to stimulus, localization, establishment of localization, and the immune system process. Cellular components engaged were the extracellular space, extracellular region parts, cell fractions, and vesicles. Molecular functions touched upon were protein binding, nucleotide binding, and enzyme inhibitor activity. The KEGG pathway analysis showed several pathways, including regulation of the actin cytoskeleton, focal adhesion, neurotrophin signaling pathway, leukocyte transendothelial migration, tight junction, complement and coagulation cascades, vascular endothelial growth factor signaling pathway, and adherens junction. These results enhance our understanding of different proteomes of human and bovine MFGM across different lactation phases, which could provide important information and potential directions for the infant milk powder and functional food industries.
Collapse
Affiliation(s)
- Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
de Castro RJS, Sato HH. Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Res Int 2015; 74:185-198. [PMID: 28411983 DOI: 10.1016/j.foodres.2015.05.013] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/01/2015] [Accepted: 05/08/2015] [Indexed: 12/01/2022]
Abstract
Recent technological advances have created great interest in the use of biologically active peptides. Bioactive peptides can be defined as specific portions of proteins with 2 to 20 amino acids that have desirable biological activities, including antioxidant, anti-hypertensive, antithrombotic, anti-adipogenic, antimicrobial and anti-inflammatory effects. Specific characteristics, including low toxicity and high specificity, make these molecules of particular interest to the food and pharmaceutical industries. This review focuses on the production of bioactive peptides, with special emphasis on fermentation and enzymatic hydrolysis. The combination of different technologies and the use of auxiliary processes are also addressed. A survey of isolation, purification and peptide characterization methods was conducted to identify the major techniques used to determine the structures of bioactive peptides. Finally, the antioxidant, antimicrobial, anti-hypertensive, anti-adipogenic activities and probiotic-bacterial growth-promoting aspects of various peptides are discussed.
Collapse
Affiliation(s)
- Ruann Janser Soares de Castro
- Department of Food Science, School of Food Engineering, University of Campinas, 80 Rua Monteiro Lobato, Campinas, SP, Brazil.
| | - Hélia Harumi Sato
- Department of Food Science, School of Food Engineering, University of Campinas, 80 Rua Monteiro Lobato, Campinas, SP, Brazil
| |
Collapse
|
28
|
Conway V, Gauthier S, Pouliot Y. Buttermilk: Much more than a source of milk phospholipids. Anim Front 2014. [DOI: 10.2527/af.2014-0014] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- V. Conway
- STELA Dairy Research Center, Institute of Nutrition and Functional Food (INAF), Université Laval, Québec, Canada, G1V 0A6
- Research Center on Aging, Health, and Social Services Center, University Institute of Geriatrics of Sherbrooke, Sherbrooke, Canada, J1H 4C4
| | - S.F. Gauthier
- STELA Dairy Research Center, Institute of Nutrition and Functional Food (INAF), Université Laval, Québec, Canada, G1V 0A6
| | - Y. Pouliot
- STELA Dairy Research Center, Institute of Nutrition and Functional Food (INAF), Université Laval, Québec, Canada, G1V 0A6
| |
Collapse
|
29
|
Danthine S, Blecker C. Interactions of lipases with milk fat globule membrane monolayers using a Langmuir film balance. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2013.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Gallier S, Cui J, Olson TD, Rutherfurd SM, Ye A, Moughan PJ, Singh H. In vivo digestion of bovine milk fat globules: effect of processing and interfacial structural changes. I. Gastric digestion. Food Chem 2013; 141:3273-81. [PMID: 23871087 DOI: 10.1016/j.foodchem.2013.06.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 05/04/2013] [Accepted: 06/04/2013] [Indexed: 11/25/2022]
Abstract
The aim was to study the in vivo gastric digestion of fat globules in bovine cream from raw, pasteurised or pasteurised and homogenised milk. Fasted rats were gavaged once and chyme samples were collected after 30, 120 and 180 min post-gavage. Proteins from raw (RC) and pasteurised (PC) creams appeared to be digested faster and to a greater extent. Free fatty acids (FAs) increased throughout the 3h postprandial period. Short and medium chain FAs were released more rapidly than long chain FAs which were hydrolysed to a greater degree from PC. The size of the fat globules of all creams increased in the stomach. Protein aggregates were observed in pasteurised and homogenised cream chyme. Protrusions, probably caused by the accumulation of insoluble lipolytic products, appeared at the surface of the globules in RC and PC chyme. Overall, PC proteins and lipids appeared to be digested to a greater extent.
Collapse
Affiliation(s)
- Sophie Gallier
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
31
|
Le TT, Debyser G, Gilbert W, Struijs K, Van Camp J, Van de Wiele T, Devreese B, Dewettinck K. Distribution and isolation of milk fat globule membrane proteins during dairy processing as revealed by proteomic analysis. Int Dairy J 2013. [DOI: 10.1016/j.idairyj.2013.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Struijs K, Van de Wiele T, Le TT, Debyser G, Dewettinck K, Devreese B, Van Camp J. Milk fat globule membrane glycoproteins prevent adhesion of the colonic microbiota and result in increased bacterial butyrate production. Int Dairy J 2013. [DOI: 10.1016/j.idairyj.2013.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Gallier S, Zhu XQ, Rutherfurd SM, Ye A, Moughan PJ, Singh H. In vivo digestion of bovine milk fat globules: effect of processing and interfacial structural changes. II. Upper digestive tract digestion. Food Chem 2013; 141:3215-23. [PMID: 23871080 DOI: 10.1016/j.foodchem.2013.06.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 05/04/2013] [Accepted: 06/04/2013] [Indexed: 11/25/2022]
Abstract
The aim of this research was to study the effect of milk processing on the in vivo upper digestive tract digestion of milk fat globules. Fasted rats were serially gavaged over a 5h period with cream from raw, pasteurised, or pasteurised and homogenised milk. Only a few intact dietary proteins and peptides were present in the small intestinal digesta. Significantly (P<0.05) more longer chain (C≥10) fatty acids were present in the digesta of rats gavaged with raw (448 mg g(-1) digesta dry matter (DDM)) and homogenised creams (528 mg g(-1) DDM), as compared to pasteurised and homogenised cream (249 mg g(-1) DDM). Microscopy techniques were used to investigate the structural changes during digestion. Liquid-crystalline lamellar phases surrounding the fat globules, fatty acid soap crystals and lipid-mucin interactions were evident in all small intestinal digesta. Overall, the pasteurised and homogenised cream appeared to be digested to a greater extent.
Collapse
Affiliation(s)
- Sophie Gallier
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Bouteille R, Perez J, Khifer F, Jouan-Rimbaud-Bouveresse D, Lecanu B, This H. Influence of the colloidal structure of dairy gels on milk fat fusion behavior: quantification of the liquid fat content by in situ quantitative proton nuclear magnetic resonance spectroscopy (isq (1) H NMR). J Food Sci 2013; 78:E535-41. [PMID: 23464867 DOI: 10.1111/1750-3841.12072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/12/2013] [Indexed: 11/30/2022]
Abstract
Dairy gels (DG), such as yoghurts, contain both solid and liquid fats at the time of consumption, as their temperature rises to anything between 10 and 24 °C after being introduced into the mouth at 4 °C. The mass ratio between solid and liquid fats, which depends on the temperature, impacts the organoleptic properties of DG. As the ordinary methods for determining this ratio can only be applied to samples consisting mainly in fat materials, a fat extraction step needs to be added into the analytical process when applied to DG, which prevents the study of the potential impact of their colloidal structure on milk fat fusion behavior. In situ quantitative proton nuclear magnetic resonance spectroscopy (isq (1) H NMR) was investigated as a method for direct measurements in DG: at temperatures between 20.0 and 70.0 °C, the liquid fat content and the composition of triacylglycerols of the liquid phase (in terms of alkyl chains length) were determined. Spectra of isolated milk fat also enable the quantification of the double bonds of triacylglycerols. Statistical tests showed no significant difference between isolated milk fat and milk fat inside a DG in terms of melting behavior: the fat globule membrane does not seem to have a significant influence on the fat melting behavior.
Collapse
Affiliation(s)
- Romain Bouteille
- INRA UMR 1145, Group of Molecular Gastronomy, 16 rue Claude Bernard, F-75005, Paris, France.
| | | | | | | | | | | |
Collapse
|
36
|
Conway V, Gauthier SF, Pouliot Y. Antioxidant activities of buttermilk proteins, whey proteins, and their enzymatic hydrolysates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:364-372. [PMID: 23244578 DOI: 10.1021/jf304309g] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The oxygen radical absorbance capacities (ORAC) and metal chelating capacities (MCC) of protein concentrates prepared from buttermilk and cheese whey by ultrafiltration were compared with those of skim milk protein. Samples were also heat-denatured and hydrolyzed by pepsin for 2 h followed by trypsin for 3 h. The highest MCC was obtained for hydrolyzed skim milk protein. ORAC values ranged from 554.4 to 1319.6 μmol Trolox equivalents/g protein, with the highest value obtained for hydrolyzed buttermilk protein. Liquid-phase isoelectric focusing (IEF) of this hydrolysate yielded peptide fractions with lower ORAC values. LC-MS analysis of the hydrolyzed skim milk and buttermilk proteins and IEF fractions of the latter showed that peptides derived from milk fat globule membrane proteins, primarily butyrophilin, could be responsible for the superior antioxidant activity of buttermilk. These results suggest overall that hydrolyzed buttermilk protein could be used as a source of natural antioxidants.
Collapse
Affiliation(s)
- Valérie Conway
- STELA Dairy Research Center and Institute of Nutraceuticals and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada G1V 0A6
| | | | | |
Collapse
|
37
|
Le TT, Van de Wiele T, Do TNH, Debyser G, Struijs K, Devreese B, Dewettinck K, Van Camp J. Stability of milk fat globule membrane proteins toward human enzymatic gastrointestinal digestion. J Dairy Sci 2012; 95:2307-18. [PMID: 22541459 DOI: 10.3168/jds.2011-4947] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 01/09/2012] [Indexed: 11/19/2022]
Abstract
The milk fat globule membrane (MFGM) fraction refers to the thin film of polar lipids and membrane proteins that surrounds fat globules in milk. It is its unique biochemical composition that renders MFGM with some beneficial biological activities, such as anti-adhesive effects toward pathogens. However, a prerequisite for the putative bioactivity of MFGM is its stability during gastrointestinal digestion. We, therefore, subjected MFGM material, isolated from raw milk, to an in vitro enzymatic gastrointestinal digestion. Sodium dodecyl sulfate PAGE, in combination with 2 staining methods, Coomassie Blue and periodic acid Schiff staining, was used to evaluate polypeptide patterns of the digest, whereas mass spectrometry was used to confirm the presence of specific MFGM proteins. Generally, it was observed that glycoproteins showed higher resistance to endogenous proteases compared with non-glycosylated proteins. Mucin 1 displayed the highest resistance to digestion and a considerable part of this protein was still detected at its original molecular weight after gastric and small intestine digestion. Cluster of differentiation 36 was also quite resistant to pepsin. A significant part of periodic acid Schiff 6/7 survived the gastric digestion, provided that the lipid moiety was not removed from the MFGM material. Overall, MFGM glycoproteins are generally more resistant to gastrointestinal digestion than serum milk proteins and the presence of lipids, besides glycosylation, may protect MFGM glycoproteins from gastrointestinal digestion. This gastrointestinal stability makes MFGM glycoproteins amenable to further studies in which their putative health-promoting effects can be explored.
Collapse
Affiliation(s)
- T T Le
- Department of Food Safety and Food Quality, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Gallier S, Ye A, Singh H. Structural changes of bovine milk fat globules during in vitro digestion. J Dairy Sci 2012; 95:3579-92. [DOI: 10.3168/jds.2011-5223] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/10/2012] [Indexed: 11/19/2022]
|
39
|
|
40
|
Solution to the Bavarois challenge. Anal Bioanal Chem 2012; 403:2463. [PMID: 22549817 DOI: 10.1007/s00216-012-6034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|