1
|
Chen X, Zhang C, Guo J, Huang X, Lv R, Quan X. Thermal and Chemical Inactivation of Bacillus Phage BM-P1. J Food Prot 2024; 87:100223. [PMID: 38242288 DOI: 10.1016/j.jfp.2024.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Bacillus spp. are often used as probiotics; however, they can be infected by phages, leading to significant economic losses. Biocidal and thermal treatments are considered rapid and effective methods for controlling microbial contamination. To prevent viral contamination in industrial dairy production, the impact of temperature and biocides on the viability of Bacillus methylotrophic phage BM-P1 was assessed. The results demonstrated that reconstituted skim milk (RSM) as a medium showed the most effective protective effect on phage BM-P1. Treatment at 90°C for 5 min or 72°C for 10 min inactivated it to nondetectable levels from the initial titer of 7.19 ± 0.11 log, regardless of the culture medium. Sodium hypochlorite exhibited the best inactivating effect, which could reduce the phage titer below the detection level in 4 min at 50 ppm. Additionally, treatment with 75% ethanol for 20 min or 50% isopropanol for 30 min could achieve inactivation to nondetectable levels. The inactivating effect of peracetic acid was limited; even when treated at the highest concentration (0.45%) for 60 min, only a 2.47 ± 0.17 log reduction was observed. This study may provide some theoretical basis and data support for establishing measures against Bacillus spp. phages.
Collapse
Affiliation(s)
- Xia Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China; Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China.
| | - Can Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China; Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China
| | - Jing Guo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China; Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China
| | - Xuecheng Huang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China; Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China
| | - Ruirui Lv
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China; Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China
| | - Xingyu Quan
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China; Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China
| |
Collapse
|
2
|
Streptococcus thermophilus Phages in Whey Derivatives: From Problem to Application in the Dairy Industry. Viruses 2022; 14:v14040810. [PMID: 35458540 PMCID: PMC9030532 DOI: 10.3390/v14040810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
Fifteen samples of whey protein concentrate (WPC) were tested against 37 commercial Streptococcus thermophilus strains to detect infective bacteriophages. Seventy-three diverse phages were isolated from 12 samples, characterized by using DNA restriction patterns and host range analyses. Sixty-two of them were classified as cos, two as pac, and nine as 5093, according to PCR multiplex assays. Phage concentration was greater than 104 PFU/g for 25.3% of isolated phages. Seven phages showed an unusual wide host range, being able to infect a high number of the tested strains. Regarding thermal resistance, pac phages were the most sensitive, followed by cos phages, those classified as 5093 being the most resistant. Treatments at 85 °C for 5 min in TMG buffer were necessary to completely inactivate all phages. Results demonstrated that the use, without control, of these whey derivatives as additives in dairy fermentations could be a threat because of the potential phage infection of starter strains. In this sense, these phages constitute a pool of new isolates used to improve the phage resistance of starter cultures applied today in the fermentative industry.
Collapse
|
3
|
Abstract
Bacteriophages represent the main microbiological threat for the manufacture of fermented foods. The dairy industry is the most affected by this problem, as phages are naturally present in raw milk, surfaces, vats, tanks, floors, and distributed by air displacements. Cheese whey may also contain high phage concentrations. Prophages harbored by lysogenic strains could be induced, generating new lytic phages. In this context, where phages cannot be eradicated from dairies, methods of phage monitoring are mandatory. These are mainly based in microbiological features, like classical methods, that are the most used, economic and simple to carry out. Phage DNA detection and quantification by PCR and qPCR, more complex and expensive, are faster, although not able to discern between viable and non-viable virions. Electron microscopy allows direct visualization and characterization of phage morphology, but the apparatus is expensive. Alternative methods based in other phage traits also exist, though less studied and not applicable on a daily basis. Recognition of contamination sources and correct phage monitoring in dairy factories allow a correct application of control measures. These include general measures such as proper factory design, efficient programs of sanitization, good treatment of raw materials, especially milk, and careful handling of by-products. Additionally, the use of starts cultures should be adequate, with application of rotation schemes when possible. Finally, the selection of bacteriophage insensitive mutants (BIM) is essential, and can be achieved simply and empirically, though the study of CRISPR-Cas and other newly discovered mechanisms provide a more rational basis to obtain BIMs with optimized features.
Collapse
|
4
|
Photocatalytic inactivation of dairy bacteriophages contained in aerosol: Comparative evaluation of efficiencies. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Inactivation of Dairy Bacteriophages by Thermal and Chemical Treatments. Viruses 2019; 11:v11050480. [PMID: 31130656 PMCID: PMC6563197 DOI: 10.3390/v11050480] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 11/16/2022] Open
Abstract
This article provides information on the characteristics of diverse phages of lactic acid bacteria and highlights the incidence of their presence in different dairy fermentations. As it is known, thermal treatments on raw milk and use of sanitizers in the disinfection of surfaces and equipment are strategies usually applied in dairy to prevent bacteriophage infections. In this sense, this review mainly focuses on the existing data about the resistance against thermal treatments and sanitizers usually used in the dairy industry worldwide, and the differences found among bacteriophages of diverse genera are remarked upon. Also, we provide information concerning the problems that have arisen as a consequence of the potential presence of bacteriophages in cheese whey powder and derivatives when they are added in fermented dairy product manufacturing. Finally, some important conclusions on each topic are marked and checkpoints to be considered are suggested.
Collapse
|
6
|
Sadiq FA, He G, Sakandar HA, Li Y, Ou K. Lactococcus lactis phages from the perspective of their diversity, thermal and biocidal resistance. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2018.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Pujato SA, Quiberoni A, Mercanti DJ. Bacteriophages on dairy foods. J Appl Microbiol 2018; 126:14-30. [PMID: 30080952 DOI: 10.1111/jam.14062] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/29/2018] [Accepted: 08/02/2018] [Indexed: 01/04/2023]
Abstract
This review focuses on the impact of bacteriophages on the manufacture of dairy foods. Firstly, the impact of phages of lactic acid bacteria in the dairy industry, where they are considered enemies, is discussed. The sources of phage contamination in dairy plants are detailed, with special emphasis on the rise of phage infections related to the growing use of cheese whey as ingredient. Other topics include traditional and new methods of phage detection, quantification and monitoring, and strategies of phage control in dairy plants, either of physical, chemical or biological nature. Finally, the use of phages or purified phage enzymes as allies to control pathogenic bacteria in the food industry is reviewed.
Collapse
Affiliation(s)
- S A Pujato
- Facultad de Ingeniería Química, Instituto de Lactología Industrial (Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas), Santa Fe, Argentina
| | - A Quiberoni
- Facultad de Ingeniería Química, Instituto de Lactología Industrial (Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas), Santa Fe, Argentina
| | - D J Mercanti
- Facultad de Ingeniería Química, Instituto de Lactología Industrial (Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas), Santa Fe, Argentina
| |
Collapse
|
8
|
Briggiler Marcó M, Negro AC, Alfano OM, Quiberoni ADL. New semi-pilot-scale reactor to study the photocatalytic inactivation of phages contained in aerosol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21385-21392. [PMID: 28405922 DOI: 10.1007/s11356-017-8994-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
The aims of this work were to design and build a photocatalytic reactor (UV-A/TiO2) to study the inactivation of phages contained in bioaerosols, which constitute the main dissemination via phages in industrial environments. The reactor is a close system with recirculation that consists of a stainless steel camera (cubic form, side of 60 cm) in which air containing the phage particles circulates and an acrylic compartment with six borosilicate plates covered with TiO2. The reactor is externally illuminated by 20 UV-A lamps. Both compartments are connected by a fan to facilitate the sample circulation. Samples are injected into the camera using two piston nebulizers working in series whereas several methodologies for sampling (impinger/syringe, sampling on photocatalytic plates, and impact of air on slide) were assayed. The reactor setup was carried out using phage B1 (Lactobacillus plantarum), and assays demonstrated a decrease of phage counts of 2.7 log orders after 1 h of photocatalytic treatment. Photonic efficiencies of inactivation were assessed by phage sampling on the photocatalytic plates or by impact of air on a glass slide at the photocatalytic reactor exit. Efficiencies of the same order of magnitude were observed using both sampling methods. This study demonstrated that the designed photocatalytic reactor is effective to inactivate phage B1 (Lb. plantarum) contained in bioaerosols.
Collapse
Affiliation(s)
- Mariángeles Briggiler Marcó
- Facultad de Ingeniería Química, Instituto de Lactología Industrial, Universidad Nacional del Litoral-Consejo Nacional de Investigaciones Científicas y Técnicas, Santiago del Estero 2829, 3000, Santa Fe, Argentina
| | - Antonio Carlos Negro
- Instituto de Desarrollo Tecnológico para la Industria Química, Universidad Nacional del Litoral-Consejo Nacional de Investigaciones Científicas y Técnicas, Ruta Nacional No. 168, 3000, Santa Fe, Argentina
| | - Orlando Mario Alfano
- Instituto de Desarrollo Tecnológico para la Industria Química, Universidad Nacional del Litoral-Consejo Nacional de Investigaciones Científicas y Técnicas, Ruta Nacional No. 168, 3000, Santa Fe, Argentina.
| | - Andrea Del Luján Quiberoni
- Facultad de Ingeniería Química, Instituto de Lactología Industrial, Universidad Nacional del Litoral-Consejo Nacional de Investigaciones Científicas y Técnicas, Santiago del Estero 2829, 3000, Santa Fe, Argentina
| |
Collapse
|
9
|
Wagner N, Matzen S, Walte HG, Neve H, Franz CM, Heller KJ, Hammer P. Extreme thermal stability of Lactococcus lactis bacteriophages: Evaluation of phage inactivation in a pilot-plant pasteurizer. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.02.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Wagner N, Samtlebe M, Franz CM, Neve H, Heller KJ, Hinrichs J, Atamer Z. Dairy bacteriophages isolated from whey powder: Thermal inactivation and kinetic characterisation. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2016.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Wagner N, Brinks E, Samtlebe M, Hinrichs J, Atamer Z, Kot W, Franz CMAP, Neve H, Heller KJ. Whey powders are a rich source and excellent storage matrix for dairy bacteriophages. Int J Food Microbiol 2016; 241:308-317. [PMID: 27835774 DOI: 10.1016/j.ijfoodmicro.2016.10.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/26/2016] [Accepted: 10/30/2016] [Indexed: 10/20/2022]
Abstract
Thirteen whey powders and 5 whey powder formulations were screened for the presence of dairy bacteriophages using a representative set of 8 acid-producing Lactococcus lactis and 5 Streptococcus thermophilus, and 8 flavour-producing Leuconostoc pseudomesenteroides and Leuconostoc mesenteroides strains. Lytic L. lactis phages were detected in all samples, while S. thermophilus and Leuconostoc phages were present in 50% or 40% of the samples, respectively. Maximal phage titers were 6×107 plaque-forming units (pfu)/g of whey powder for L. lactis phages, 1×107pfu/g for Leuconostoc phages and 1×105pfu/g for S. thermophilus phages. In total, 55 phages were isolated and characterized. Thirty one of the 33 lactococcal phages tested belonged to the wide-spread 936 phage group. In the course of this study, a PCR detection method for Leuconostoc phages (Ali et al., 2013) was adapted to new phage isolates. Furthermore, a remarkably high stability of phages in whey powder samples was documented during a long-term storage period of 4 years.
Collapse
Affiliation(s)
- Natalia Wagner
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Erik Brinks
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Meike Samtlebe
- Department of Soft Matter and Dairy Technology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstraße 21, 70593 Stuttgart, Germany
| | - Jörg Hinrichs
- Department of Soft Matter and Dairy Technology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstraße 21, 70593 Stuttgart, Germany
| | - Zeynep Atamer
- Department of Soft Matter and Dairy Technology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstraße 21, 70593 Stuttgart, Germany
| | - Witold Kot
- Department of Environmental Science, Aarhus University, Frederiksborgvej, 399, 4000 Roskilde, Denmark
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Hermann-Weigmann-Str. 1, 24103 Kiel, Germany.
| | - Knut J Heller
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| |
Collapse
|
12
|
Identification and Analysis of a Novel Group of Bacteriophages Infecting the Lactic Acid Bacterium Streptococcus thermophilus. Appl Environ Microbiol 2016; 82:5153-65. [PMID: 27316953 DOI: 10.1128/aem.00835-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/09/2016] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED We present the complete genome sequences of four members of a novel group of phages infecting Streptococcus thermophilus, designated here as the 987 group. Members of this phage group appear to have resulted from genetic exchange events, as evidenced by their "hybrid" genomic architecture, exhibiting DNA sequence relatedness to the morphogenesis modules of certain P335 group Lactococcus lactis phages and to the replication modules of S. thermophilus phages. All four identified members of the 987 phage group were shown to elicit adsorption affinity to both their cognate S. thermophilus hosts and a particular L. lactis starter strain. The receptor binding protein of one of these phages (as a representative of this novel group) was defined using an adsorption inhibition assay. The emergence of a novel phage group infecting S. thermophilus highlights the continuous need for phage monitoring and development of new phage control measures. IMPORTANCE Phage predation of S. thermophilus is an important issue for the dairy industry, where viral contamination can lead to fermentation inefficiency or complete fermentation failure. Genome information and phage-host interaction studies of S. thermophilus phages, particularly those emerging in the marketplace, are an important part of limiting the detrimental impact of these viruses in the dairy environment.
Collapse
|
13
|
Geagea H, Gomaa AI, Remondetto G, Moineau S, Subirade M. Investigation of the protective effect of whey proteins on lactococcal phages during heat treatment at various pH. Int J Food Microbiol 2015; 210:33-41. [PMID: 26093988 DOI: 10.1016/j.ijfoodmicro.2015.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/05/2015] [Accepted: 06/10/2015] [Indexed: 11/24/2022]
Abstract
The incorporation of whey protein concentrates (WPC) into cheese is a risky process due to the potential contamination with thermo-resistant phages of lactic acid bacteria (LAB). Furthermore, whey proteins can protect phages during heat treatment, thereby increasing the above risk. The main objective of this work was to understand this protective effect in order to better control LAB phages and maximize whey recycling in the cheese industry. First, the inactivation of a previously characterized thermo-resistant lactococcal virulent phage (P1532) was investigated at 95 °C in WPC, in individual whey components β-lactoglobulin, α-lactalbumin, and bovine serum albumin as well as under different heat and pH conditions. The structural changes of the tested proteins were also monitored by transmission FTIR spectroscopy. Phage inactivation results indicated that the protective effect of whey proteins was pH and time dependent at 95 °C and was not restricted to one component. FTIR spectra suggest that the protection is related to protein molecular structures and to the level of protein aggregates, which was more pronounced in acidic conditions. Moreover, the molecular structure of the three proteins tested was differently influenced by pH and the duration of the heat treatment. This work confirms the protective effect of WPC on phages during heat treatment and offers the first hint to explain such phenomenon. Finding the appropriate treatment of WPC to reduce the phage risk is one of the keys to improving the cheese manufacturing process.
Collapse
Affiliation(s)
- Hany Geagea
- The Nutrition and Functional Foods Institute (INAF), Université Laval, Quebec G1V 0A6, Canada; Department of Food Science and Nutrition, Université Laval, Quebec G1V 0A6, Canada; Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Quebec G1V 0A6, Canada
| | - Ahmed I Gomaa
- The Nutrition and Functional Foods Institute (INAF), Université Laval, Quebec G1V 0A6, Canada; Department of Food Science and Nutrition, Université Laval, Quebec G1V 0A6, Canada; Department of Food Science and Nutrition, National Research Center, Egypt
| | | | - Sylvain Moineau
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Quebec G1V 0A6, Canada
| | - Muriel Subirade
- The Nutrition and Functional Foods Institute (INAF), Université Laval, Quebec G1V 0A6, Canada; Department of Food Science and Nutrition, Université Laval, Quebec G1V 0A6, Canada.
| |
Collapse
|
14
|
Zhang L, Qu M, Yao J, Wang P, Liao X, Hu X, Chen F. Effect of high hydrostatic pressure on the viability of Streptococcus thermophilus bacteriophages isolated from cheese. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2015.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Pujato SA, Guglielmotti DM, Ackermann HW, Patrignani F, Lanciotti R, Reinheimer JA, Quiberoni A. Leuconostoc bacteriophages from blue cheese manufacture: long-term survival, resistance to thermal treatments, high pressure homogenization and chemical biocides of industrial application. Int J Food Microbiol 2014; 177:81-8. [DOI: 10.1016/j.ijfoodmicro.2014.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/12/2014] [Accepted: 02/15/2014] [Indexed: 12/27/2022]
|
16
|
Murphy J, Mahony J, Bonestroo M, Nauta A, van Sinderen D. Impact of thermal and biocidal treatments on lactococcal 936-type phages. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2013.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Murphy J, Royer B, Mahony J, Hoyles L, Heller K, Neve H, Bonestroo M, Nauta A, van Sinderen D. Biodiversity of lactococcal bacteriophages isolated from 3 Gouda-type cheese-producing plants. J Dairy Sci 2013; 96:4945-57. [PMID: 23769356 DOI: 10.3168/jds.2013-6748] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/25/2013] [Indexed: 11/19/2022]
Abstract
This study reports on the identification and characterization of bacteriophages isolated from cheese-production facilities that use undefined, mixed starter cultures. Phage screening was carried out on whey samples isolated from 3 factories, 2 utilizing one particular undefined starter mixture and 1 utilizing another undefined starter mixture. Phage screening was carried out using 40 strains isolated from the 2 mixed starter cultures, and phages were profiled using host range, electron microscopy, multiplex PCR, and DNA restriction analysis. Twenty distinct lactococcal phages were identified based on host range and DNA restriction profiles, all belonging to the 936-type phage species. Nineteen of these phages were found to be able to infect both recognized subspecies of Lactococcus lactis. Restriction of phage DNA isolated using a newly developed guanidinium thiocyanate disruption method showed that the genomes of the 20 isolated phages were between 26 and 31 kb in size. It is evident from this study that the use of mixed starters creates an ideal environment for the proliferation of different phages with slightly varying host ranges. Furthermore, in this environment, members of the 936-type phage species clearly dominated the phage population.
Collapse
Affiliation(s)
- James Murphy
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|