1
|
Pipaliya R, Basaiawmoit B, Sakure AA, Maurya R, Bishnoi M, Kondepudi KK, Padhi S, Rai AK, Liu Z, Sarkar P, Hati S. Production and characterization of anti-hypertensive and anti-diabetic peptides from fermented sheep milk with anti-inflammatory activity: in vitro and molecular docking studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 38855927 DOI: 10.1002/jsfa.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/09/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND The present study aimed to evaluate the anti-hypertensive and anti-diabetic activities from biologically active peptides produced by fermented sheep milk with Lacticaseibacillus paracasei M11 (MG027695), as well as to purify and characterize the angiotensin-converting enzyme (ACE) inhibitory and anti-diabetic peptides produced from fermented sheep milk. RESULTS After 48 h of fermentation at 37 °C, sheep milk demonstrated significant changes in anti-diabetic effects and ACE-I effects, with inhibition percentages observed for ACE inhibition (76.32%), α-amylase (70.13%), α-glucosidase (70.11%) and lipase inhibition (68.22%). The highest level of peptides (9.77 mg mL-1) was produced by optimizing the growth conditions, which included an inoculation rate of 2.5% and a 48 h of incubation period. The comparison of molecular weight distributions among protein fractions was conducted through sodium dodecyl-sulfate polyacrylamide gel electrophoresis analysis, whereas spots were separated using 2D gel electrophoresis according to both the molecular weight and pH. Peptide characterization with ultra-filtration membranes at 3 and 10 kDa allowed the study to assess molecular weight-based separation. Nitric oxide generated by lipopolysaccharide and the secretion of pro-inflammatory cytokines in RAW 264.7 immune cells were both inhibited by sheep milk fermented with M11. Fourier-transform infrared spectroscopy was employed to assess changes in functional groups after fermentation, providing insights into the structural changes occurring during fermentation. CONCLUSION The present study demonstrates that fermentation with L. paracasei (M11) led to significant changes in fermented sheep milk, enhancing its bioactive properties, notably in terms of ACE inhibition and anti-diabetic activities, and the generation of peptides with bioactive properties has potential health benefits. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rinkal Pipaliya
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura Campus, Chasingre, India
| | - Amar A Sakure
- Department of Agriculture Biotechnology, Anand Agricultural University, Anand, India
| | - Ruchika Maurya
- Regional Center for Biotechnology, Faridabad, India
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Srichandan Padhi
- Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Amit Kumar Rai
- Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Zhenbin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, India
| |
Collapse
|
2
|
Pipaliya R, Basaiawmoit B, Sakure AA, Maurya R, Bishnoi M, Kondepudi KK, Singh BP, Paul S, Liu Z, Sarkar P, Patel A, Hati S. Peptidomics-based identification of antihypertensive and antidiabetic peptides from sheep milk fermented using Limosilactobacillus fermentum KGL4 MTCC 25515 with anti-inflammatory activity: in silico, in vitro, and molecular docking studies. Front Chem 2024; 12:1389846. [PMID: 38746020 PMCID: PMC11091447 DOI: 10.3389/fchem.2024.1389846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 05/16/2024] Open
Abstract
This study investigated the synthesis of bioactive peptides from sheep milk through fermentation with Limosilactobacillus fermentum KGL4 MTCC 25515 strain and assessed lipase inhibition, ACE inhibition, α-glucosidase inhibition, and α-amylase inhibition activities during the fermentation process. The study observed the highest activities, reaching 74.82%, 70.02%, 72.19%, and 67.08% (lipase inhibition, ACE inhibition, α-glucosidase inhibition, and α-amylase inhibition) after 48 h at 37°C, respectively. Growth optimization experiments revealed that a 2.5% inoculation rate after 48 h of fermentation time resulted in the highest proteolytic activity at 9.88 mg/mL. Additionally, fractions with less than 3 kDa of molecular weight exhibited superior ACE-inhibition and anti-diabetic activities compared to other fractions. Fermentation of sheep milk with KGL4 led to a significant reduction in the excessive production of NO, TNF-α, IL-6, and IL-1β produced in RAW 267.4 cells upon treatment with LPS. Peptides were purified utilizing SDS-PAGE and electrophoresis on 2D gels, identifying a maximum number of proteins bands ranging 10-70 kDa. Peptide sequences were cross-referenced with AHTPDB and BIOPEP databases, confirming potential antihypertensive and antidiabetic properties. Notably, the peptide (GPFPILV) exhibited the highest HPEPDOCK score against both α-amylase and ACE.
Collapse
Affiliation(s)
- Rinkal Pipaliya
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat, India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura Campus, Chasingre, Meghalaya, India
| | - Amar A. Sakure
- Departmentof Agriculture Biotechnology, Anand Agricultural University, Anand, Gujarat, India
| | - Ruchika Maurya
- Regional Center for Biotechnology, Faridabad, Haryana, India
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Brij Pal Singh
- Department of Microbiology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| | - Souparno Paul
- Department of Microbiology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| | - Zhenbin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, India
| | - Ashish Patel
- Department of Animal Genetics and Breeding, College of Veterinary Science, Kamdhenu University, Anand, Gujarat, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat, India
| |
Collapse
|
3
|
A comparative study of fermented buffalo and camel milk with anti-inflammatory, ACE-inhibitory and anti-diabetic properties and release of bio active peptides with molecular interactions: In vitro, in silico and molecular study. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
4
|
Chopada K, Basaiawmoit B, Sakure AA, Maurya R, Bishnoi M, Kondepudi KK, Solanki D, Singh BP, Padhi S, Rai AK, Liu Z, Mishra BK, Hati S. Purification and Characterization of Novel Antihypertensive and Antioxidative Peptides From Whey Protein Fermentate: In Vitro, In Silico, and Molecular Interactions Studies. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2022:1-20. [PMID: 36416542 DOI: 10.1080/27697061.2022.2110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE The goal of this research was to purify and characterize the novel angiotensin-converting enzyme (ACE)-inhibitory and antioxidant peptides from fermented whey protein concentrate produced by Lactobacillus paracasei and Saccharomyces cerevisiae in a co-fermentation system. METHOD Whey protein fermented with lactic acid bacteria and yeast culture was analyzed for antioxidative, ACE inhibition, as well as anti-inflammatory activity followed by SDS-PAGE, isoelectric focusing, and 2-dimensional (2D) analysis. Anti-inflammatory activity of whey protein fermentate was also studied on the RAW 264.7 cell line. The bioactive peptides were separated from the whey protein fermentate using reverse-phase high-performance liquid chromatography (RP-HPLC) and reverse-phase liquid chromatography mass spectrometry (RPLC/MS), and thus identification and characterization of purified bioactive peptide was performed. RESULTS Whey protein fermentate samples' bioactivity was analyzed at specific time intervals at 12, 24, 36, and 48 hours at 37 °C for M11 and at 25 °C for WBS2A. The development settings (incubation time [12, 24, 36, and 48 hours) and inoculation rates [1.5%, 2.0%, and 2.5%]) were optimized for peptide synthesis via the o-phthaldialdehyde (OPA) method (proteolytic activity). Maximum proteolytic activity was observed at 37 °C for M11 (6.50 mg/mL) and at 25 °C for WBS2A (8.59 mg/mL) for 48 hours of incubation. Protein profiling was carried out using SDS-PAGE and 2D gel electrophoresis, in which Sodium dodecyl-sulfate (SDS) exhibited protein bands in the 10- to 55-kDa range, while 2D showed protein bands varying from 10 to 70 kDa. Every spot from 2D was digested by trypsin and identified by RPLC/MS. Protein fractionations (3- and 10-kDa permeates) were carried out employing RP-HPLC. Whey protein fermentate has anti-inflammatory action in RAW 264.7 macrophages that have been exposed to lipopolysaccharide. A molecular docking system was also used to investigate the interactions of peptides (AFLDSRTR, ILGAFIQIITFR) with human myeloperoxidase enzyme. CONCLUSIONS The antihypertensive and antioxidative peptides discovered from whey protein fermentate may be helpful in the design of pharmacologically active healthy ingredients in the upcoming years.
Collapse
Affiliation(s)
- Keval Chopada
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Gandhinagar, Gujarat, India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura, Meghalaya, India
| | - Amar A Sakure
- Department of Agriculture Biotechnology, Anand Agricultural University, Anand, Gujarat, India
| | - Ruchika Maurya
- Regional Center for Biotechnology, Faridabad, Haryana, India
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Punjab, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Punjab, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Punjab, India
| | - Divyang Solanki
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - B P Singh
- Department of Microbiology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Zhenbin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - B K Mishra
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura, Meghalaya, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Gandhinagar, Gujarat, India
| |
Collapse
|
5
|
İnci Öztürk H, Oraç A, Akin N. Characterization of bioactive peptides derived from goatskin Tulum cheese of the Ereğli region at different stages of ripening. Food Res Int 2022; 162:112124. [DOI: 10.1016/j.foodres.2022.112124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/24/2022] [Accepted: 11/06/2022] [Indexed: 11/15/2022]
|
6
|
Proteomics Characterization of Food-Derived Bioactive Peptides with Anti-Allergic and Anti-Inflammatory Properties. Nutrients 2022; 14:nu14204400. [PMID: 36297084 PMCID: PMC9609859 DOI: 10.3390/nu14204400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022] Open
Abstract
Bioactive peptides are found in foods and dietary supplements and are responsible for health benefits with applications in human and animal medicine. The health benefits include antihypertensive, antimicrobial, antithrombotic, immunomodulatory, opioid, antioxidant, anti-allergic and anti-inflammatory functions. Bioactive peptides can be obtained by microbial action, mainly by the gastrointestinal microbiota from proteins present in food, originating from either vegetable or animal matter or by the action of different gastrointestinal proteases. Proteomics can play an important role in the identification of bioactive peptides. High-resolution mass spectrometry is the principal technique used to detect and identify different types of analytes present in complex mixtures, even when available at low concentrations. Moreover, proteomics may provide the characterization of epitopes to develop new food allergy vaccines and the use of immunomodulating peptides to induce oral tolerance toward offending food allergens or even to prevent allergic sensitization. In addition, food-derived bioactive peptides have been investigated for their anti-inflammatory properties to provide safer alternatives to nonsteroidal anti-inflammatory drugs (NSAIDs). All these bioactive peptides can be a potential source of novel drugs and ingredients in food and pharmaceuticals. The following review is focused on food-derived bioactive peptides with antiallergic and anti-inflammatory properties and summarizes the new insights into the use of proteomics for their identification and quantification.
Collapse
|
7
|
ACE-inhibitory activities of peptide fractions (<3 kDa) and identification of peptide sequence by MALDI-ToF-MS in model cheeses incorporating different Lactobacillus species. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Exploring the potential of Lactobacillus and Saccharomyces for biofunctionalities and the release of bioactive peptides from whey protein fermentate. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Proteolysis pattern and functional peptides in artisanal Tulum cheeses produced from Mut province in Turkey. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
Skrzypczak K, Fornal E, Domagała D, Gustaw W, Jabłońska-Ryś E, Sławińska A, Radzki W, Kononiuk A, Waśko A. Use of α-Lactalbumin and Caseinoglycomacropeptide as Biopeptide Precursors and as Functional Additives in Milk Beverages Fermented by L. helveticus. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:8822161. [PMID: 33954168 PMCID: PMC8060077 DOI: 10.1155/2021/8822161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 01/28/2021] [Accepted: 04/01/2021] [Indexed: 01/14/2023]
Abstract
The objective of this investigation was to verify whether biologically active peptides (BAPs) could be obtained from water solutions of α-lactalbumin (α-la) and caseinoglycomacropeptide (CGMP) through an application of the new Lactobacillus helveticus strains. Also, the aim of this research was to determine the influence of addition of the analyzed protein preparations to milk subjected to fermentation by tested bacterial strains on the physicochemical properties of obtained milk beverages. The results indicate that CGMP is a more preferable source for the production of BAPs by the test bacteria than α-la. The antihypertensive and ACE inhibitory effects were the most widespread bioactivities among the detected BAPs. α-la containing fermented milk beverages had higher values of springiness, gumminess, chewiness, and resilience than analogous products containing CGMP, while CGMP-supplemented fermented products exhibited higher values of the hardness parameter. The highest values of hardness (0.416 ± 0.05 N) were recorded for beverages fermented by DSMZ containing the addition of CGMP, while the lowest value of this parameter (0.186 ± 0.06 N) was noted for products containing α-la and fermented by B734. Moreover, CGMP-containing fermented products were characterized by a generally higher value of the proteolysis index (PI) than analogous variants containing α-la. The use of analyzed strains and the selected protein preparations has a positive effect on the texture of fermented milk beverages and might contribute to an increase in the health-promoting potential of such products.
Collapse
Affiliation(s)
- Katarzyna Skrzypczak
- Department of Plant Food Technology and Gastronomy, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Emilia Fornal
- Department of Pathophysiology, Medical University of Lublin, 8b Jaczewskiego Street, 20-090 Lublin, Poland
| | - Dorota Domagała
- Department of Applied Mathematics and Computer Science, Faculty of Production Engineering, University of Life Sciences in Lublin, 28 Głęboka Street, 20-612 Lublin, Poland
| | - Waldemar Gustaw
- Department of Plant Food Technology and Gastronomy, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Ewa Jabłońska-Ryś
- Department of Plant Food Technology and Gastronomy, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Aneta Sławińska
- Department of Plant Food Technology and Gastronomy, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Wojciech Radzki
- Department of Plant Food Technology and Gastronomy, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Anna Kononiuk
- Department of Meat Technology and Food Quality, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Adam Waśko
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| |
Collapse
|
11
|
Öztürk Hİ, Akın N. Effect of ripening time on peptide dynamics and bioactive peptide composition in Tulum cheese. J Dairy Sci 2021; 104:3832-3852. [PMID: 33551157 DOI: 10.3168/jds.2020-19494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022]
Abstract
Skin bag Tulum cheeses traditionally produced in the Central Taurus region of Turkey were studied to identify peptide profiles by liquid chromatography-tandem mass spectrometry over 180 d of ripening. After mass spectrometry analysis, 203 peptides were identified: 59 from αS1-casein (CN), 11 from αS2-CN, 129 from β-CN, and 4 from κ-CN. Numbers of αS1- and β-CN-derived peptides increased with increasing number of ripening days due to the dependence of newly formed peptides on proteolysis. However, similar increases were not observed for αS2- and κ-CN-derived peptides. Most identified peptides consisted of β-CN-derived peptides, followed by αS1-, αS2-, and κ-CN-derived peptides. Among these, bioactive peptides were found, including antihypertensive, antibacterial, antioxidant, dipeptidyl peptidase-4 inhibitory, metal chelating, skin regenerating, glucagon-like peptide-1 secretion enhancing, opioid, cathepsin B inhibitory, prolyl endopeptidase inhibitory, immunomodulatory, brain function improving, antiamnesic, antihypercholesterolemic, anti-inflammatory, and anticarcinogenic peptides.
Collapse
Affiliation(s)
- H İ Öztürk
- Department of Food Engineering, Konya Food and Agriculture University, Konya, 42080, Turkey.
| | - N Akın
- Department of Food Engineering, University of Selcuk, Konya, 42050, Turkey
| |
Collapse
|
12
|
David S, Magram Klaiman M, Shpigelman A, Lesmes U. Addition of Anionic Polysaccharide Stabilizers Modulates In Vitro Digestive Proteolysis of a Chocolate Milk Drink in Adults and Children. Foods 2020; 9:foods9091253. [PMID: 32906813 PMCID: PMC7555934 DOI: 10.3390/foods9091253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/19/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
There is a need to better understand the possible anti-nutritional effect of food stabilizers on the digestibility of important macronutrients, like proteins. This study hypothesized that the anionic nature of κ-, ι-, λ-, Carrageenan (CGN) and xanthan gum directs their interactions with food proteins leading to their subsequent attenuated digestive proteolysis. Model chocolate milk drinks were tested for their colloidal properties, viscosity and proteolytic breakdown in adults and children using in vitro digestion models coupled with proteomic analyses. SDS-PAGE analyses of gastro-intestinal effluents highlight stabilizers hinder protein breakdown in adults and children. Zeta potential and colloidal particle size were the strongest determinants of stabilizers’ ability to hinder proteolysis. LC-MS proteomic analyses revealed stabilizer addition significantly reduced bioaccessibility of milk-derived bioactive peptides with differences in liberated peptide sequences arising mainly from their location on the outer rim of the protein structures. Further, liberation of bioactive peptides emptying from a child stomach into the intestine were most affected by the presence of ι-CGN. Overall, this study raises the notion that stabilizer charge and other properties of edible proteins are detrimental to the ability of humans to utilize the nutritional potential of such formulations. This could help food professionals and regulatory agencies carefully consider the use of anionic stabilizers in products aiming to serve as protein sources for children and other liable populations.
Collapse
|
13
|
Identification and Detection of Bioactive Peptides in Milk and Dairy Products: Remarks about Agro-Foods. Molecules 2020; 25:molecules25153328. [PMID: 32707993 PMCID: PMC7435915 DOI: 10.3390/molecules25153328] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Food-based components represent major sources of functional bioactive compounds. Milk is a rich source of multiple bioactive peptides that not only help to fulfill consumers 'nutritional requirements but also play a significant role in preventing several health disorders. Understanding the chemical composition of milk and its products is critical for producing consistent and high-quality dairy products and functional dairy ingredients. Over the last two decades, peptides have gained significant attention by scientific evidence for its beneficial health impacts besides their established nutrient value. Increasing awareness of essential milk proteins has facilitated the development of novel milk protein products that are progressively required for nutritional benefits. The need to better understand the beneficial effects of milk-protein derived peptides has, therefore, led to the development of analytical approaches for the isolation, separation and identification of bioactive peptides in complex dairy products. Continuous emphasis is on the biological function and nutritional characteristics of milk constituents using several powerful techniques, namely omics, model cell lines, gut microbiome analysis and imaging techniques. This review briefly describes the state-of-the-art approach of peptidomics and lipidomics profiling approaches for the identification and detection of milk-derived bioactive peptides while taking into account recent progress in their analysis and emphasizing the difficulty of analysis of these functional and endogenous peptides.
Collapse
|
14
|
Nongonierma AB, Dellafiora L, Paolella S, Galaverna G, Cozzini P, FitzGerald RJ. In Silico Approaches Applied to the Study of Peptide Analogs of Ile-Pro-Ile in Relation to Their Dipeptidyl Peptidase IV Inhibitory Properties. Front Endocrinol (Lausanne) 2018; 9:329. [PMID: 29963014 PMCID: PMC6010526 DOI: 10.3389/fendo.2018.00329] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/31/2018] [Indexed: 12/17/2022] Open
Abstract
Inhibition of dipeptidyl peptidase IV (DPP-IV) may be exploited to maintain the incretin effect during the postprandial phase. As a result, glycemic regulation and energy homeostasis may be improved. Food protein-derived peptides have been identified as natural agents capable of inhibiting DPP-IV. Ile-Pro-Ile is the most potent DPP-IV inhibitory peptide identified to date. A minimum analog peptide set approach was used to study peptide analogs of Ile-Pro-Ile. The DPP-IV half maximal inhibitory concentration (IC50) values of the 25 peptides evaluated ranged from 3.9 ± 1.0 µM (Ile-Pro-Ile) to 247.0 ± 32.7 µM (Phe-Pro-Phe). The presence of Pro at position 2 of tripeptides was required to achieve high DPP-IV inhibition. Most peptides behaved as competitive inhibitors of DPP-IV with the exception of peptides with a N-terminal Trp, which were mixed-type inhibitors. While possessing the structure of preferred DPP-IV substrates, most peptides studied were particularly stable during 30 min incubation with DPP-IV. Molecular docking revealed that Ile-Pro-Ile and its peptide analogs interacted in a very similar manner with the active site of DPP-IV. In addition, no correlation was found between the Hydropathic INTeraction score and the DPP-IV IC50 values of the peptides studied. This outcome suggests that free energy may not be directly responsible for enzyme inhibition by the peptides. Finally, novel DPP-IV inhibitory peptides were identified using the strategy employed herein. These results may be relevant for the development of food protein-derived peptides with serum glucose lowering and food intake regulatory properties in humans.
Collapse
Affiliation(s)
- Alice B. Nongonierma
- Department of Biological Sciences and Food for Health Ireland (FHI), University of Limerick, Limerick, Ireland
| | | | - Sara Paolella
- Department of Biological Sciences and Food for Health Ireland (FHI), University of Limerick, Limerick, Ireland
| | | | - Pietro Cozzini
- Food and Drug Department, University of Parma, Parma, Italy
| | - Richard J. FitzGerald
- Department of Biological Sciences and Food for Health Ireland (FHI), University of Limerick, Limerick, Ireland
| |
Collapse
|
15
|
Agyei D, Tsopmo A, Udenigwe CC. Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Anal Bioanal Chem 2018. [PMID: 29516135 DOI: 10.1007/s00216-018-0974-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There are emerging advancements in the strategies used for the discovery and development of food-derived bioactive peptides because of their multiple food and health applications. Bioinformatics and peptidomics are two computational and analytical techniques that have the potential to speed up the development of bioactive peptides from bench to market. Structure-activity relationships observed in peptides form the basis for bioinformatics and in silico prediction of bioactive sequences encrypted in food proteins. Peptidomics, on the other hand, relies on "hyphenated" (liquid chromatography-mass spectrometry-based) techniques for the detection, profiling, and quantitation of peptides. Together, bioinformatics and peptidomics approaches provide a low-cost and effective means of predicting, profiling, and screening bioactive protein hydrolysates and peptides from food. This article discuses the basis, strengths, and limitations of bioinformatics and peptidomics approaches currently used for the discovery and analysis of food-derived bioactive peptides.
Collapse
Affiliation(s)
- Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada. .,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
16
|
Enhancing bioactive peptide release and identification using targeted enzymatic hydrolysis of milk proteins. Anal Bioanal Chem 2017; 410:3407-3423. [PMID: 29260283 DOI: 10.1007/s00216-017-0793-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 12/29/2022]
Abstract
Milk proteins have been extensively studied for their ability to yield a range of bioactive peptides following enzymatic hydrolysis/digestion. However, many hurdles still exist regarding the widespread utilization of milk protein-derived bioactive peptides as health enhancing agents for humans. These mostly arise from the fact that most milk protein-derived bioactive peptides are not highly potent. In addition, they may be degraded during gastrointestinal digestion and/or have a low intestinal permeability. The targeted release of bioactive peptides during the enzymatic hydrolysis of milk proteins may allow the generation of particularly potent bioactive hydrolysates and peptides. Therefore, the development of milk protein hydrolysates capable of improving human health requires, in the first instance, optimized targeted release of specific bioactive peptides. The targeted hydrolysis of milk proteins has been aided by a range of in silico tools. These include peptide cutters and predictive modeling linking bioactivity to peptide structure [i.e., molecular docking, quantitative structure activity relationship (QSAR)], or hydrolysis parameters [design of experiments (DOE)]. Different targeted enzymatic release strategies employed during the generation of milk protein hydrolysates are reviewed herein and their limitations are outlined. In addition, specific examples are provided to demonstrate how in silico tools may help in the identification and discovery of potent milk protein-derived peptides. It is anticipated that the development of novel strategies employing a range of in silico tools may help in the generation of milk protein hydrolysates containing potent and bioavailable peptides, which in turn may be used to validate their health promoting effects in humans. Graphical abstract The targeted enzymatic hydrolysis of milk proteins may allow the generation of highly potent and bioavailable bioactive peptides.
Collapse
|
17
|
Strategies for the discovery and identification of food protein-derived biologically active peptides. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.03.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
18
|
Hajfathalian M, Ghelichi S, García-Moreno PJ, Moltke Sørensen AD, Jacobsen C. Peptides: Production, bioactivity, functionality, and applications. Crit Rev Food Sci Nutr 2017; 58:3097-3129. [PMID: 29020461 DOI: 10.1080/10408398.2017.1352564] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Production of peptides with various effects from proteins of different sources continues to receive academic attention. Researchers of different disciplines are putting increasing efforts to produce bioactive and functional peptides from different sources such as plants, animals, and food industry by-products. The aim of this review is to introduce production methods of hydrolysates and peptides and provide a comprehensive overview of their bioactivity in terms of their effects on immune, cardiovascular, nervous, and gastrointestinal systems. Moreover, functional and antioxidant properties of hydrolysates and isolated peptides are reviewed. Finally, industrial and commercial applications of bioactive peptides including their use in nutrition and production of pharmaceuticals and nutraceuticals are discussed.
Collapse
Affiliation(s)
- Mona Hajfathalian
- a Division of Food Technology, National Food Institute , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Sakhi Ghelichi
- a Division of Food Technology, National Food Institute , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark.,b Department of Seafood Science and Technology, Faculty of Fisheries and Environmental Science , Gorgan University of Agricultural Sciences and Natural Resources , Gorgan , Iran
| | - Pedro J García-Moreno
- a Division of Food Technology, National Food Institute , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Ann-Dorit Moltke Sørensen
- a Division of Food Technology, National Food Institute , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Charlotte Jacobsen
- a Division of Food Technology, National Food Institute , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| |
Collapse
|
19
|
Nongonierma AB, Paolella S, Mudgil P, Maqsood S, FitzGerald RJ. Identification of novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in camel milk protein hydrolysates. Food Chem 2017; 244:340-348. [PMID: 29120791 DOI: 10.1016/j.foodchem.2017.10.033] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/13/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022]
Abstract
Nine novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides (FLQY, FQLGASPY, ILDKEGIDY, ILELA, LLQLEAIR, LPVP, LQALHQGQIV, MPVQA and SPVVPF) were identified in camel milk proteins hydrolysed with trypsin. This was achieved using a sequential approach combining liquid chromatography tandem mass spectrometry (LC-MS/MS), qualitative/quantitative structure activity relationship (QSAR) and confirmatory studies with synthetic peptides. The most potent camel milk protein-derived DPP-IV inhibitory peptides, LPVP and MPVQA, had DPP-IV half maximal inhibitory concentrations (IC50) of 87.0 ± 3.2 and 93.3 ± 8.0 µM, respectively. DPP-IV inhibitory peptide sequences identified within camel and bovine milk protein hydrolysates generated under the same hydrolysis conditions differ. This was linked to differences in enzyme selectivity for peptide bond cleavage of camel and bovine milk proteins as well as dissimilarities in their amino acid sequences. Camel milk proteins contain novel DPP-IV inhibitory peptides which may play a role in the regulation of glycaemia in humans.
Collapse
Affiliation(s)
- Alice B Nongonierma
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Food for Health Ireland (FHI), University of Limerick, Limerick, Ireland
| | - Sara Paolella
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Food for Health Ireland (FHI), University of Limerick, Limerick, Ireland
| | - Priti Mudgil
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Richard J FitzGerald
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Food for Health Ireland (FHI), University of Limerick, Limerick, Ireland.
| |
Collapse
|
20
|
Abstract
The remarkable growth of therapeutic peptide development in the past decade has led to a large number of market approvals and the market value is expected to hit $25 billion by 2018. This significant market increase is driven by the increasing incidences of metabolic and cardiovascular diseases and technological advancements in peptide synthesis. For this reason, the search for bioactive peptides has also increased exponentially. Many bioactive peptides from food and nonfood sources have shown positive health effects yet, obstacles such as the need to implement efficient and cost-effective strategies for industrial scale production, good manufacturing practices as well as well-designed clinical trials to provide robust evidence for supporting health claims continue to exist. Several other factors such as the possibility of allergenicity, toxicity and the stability of biological functions of the peptides during gastrointestinal digestion would need to be addressed.
Collapse
Affiliation(s)
- Eric Banan-Mwine Daliri
- a Department of Food Science and Biotechnology , Kangwon National University , Chuncheon , South Korea
| | - Byong H Lee
- a Department of Food Science and Biotechnology , Kangwon National University , Chuncheon , South Korea.,b Department of Microbiology/Immunology , McGill University , Montreal , QC , H3A 2B4 , Canada
| | - Deog H Oh
- a Department of Food Science and Biotechnology , Kangwon National University , Chuncheon , South Korea
| |
Collapse
|
21
|
Agyei D, Ongkudon CM, Wei CY, Chan AS, Danquah MK. Bioprocess challenges to the isolation and purification of bioactive peptides. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2016.02.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Basiricò L, Catalani E, Morera P, Cattaneo S, Stuknytė M, Bernabucci U, De Noni I, Nardone A. Release of angiotensin converting enzyme-inhibitor peptides during in vitro gastrointestinal digestion of Parmigiano Reggiano PDO cheese and their absorption through an in vitro model of intestinal epithelium. J Dairy Sci 2015; 98:7595-601. [PMID: 26364103 DOI: 10.3168/jds.2015-9801] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/25/2015] [Indexed: 12/21/2022]
Abstract
The occurrence of 8 bovine casein-derived peptides (VPP, IPP, RYLGY, RYLG, AYFYPEL, AYFYPE, LHLPLP, and HLPLP) reported as angiotensin converting enzyme-inhibitors (ACE-I) was investigated in the 3-kDa ultrafiltered water-soluble extract (WSE) of Parmigiano Reggiano (PR) cheese samples by ultra-performance liquid chromatography coupled to high-resolution mass spectrometry via an electrospray ionization source. Only VPP, IPP, LHLPLP, and HLPLP were revealed in the WSE, and their total amount was in the range of 8.46 to 21.55 mg/kg of cheese. Following in vitro static gastrointestinal digestion, the same ACE-I peptides along with the newly formed AYFYPEL and AYFYPE were found in the 3 kDa WSE of PR digestates. Digestates presented high amounts (1,880-3,053 mg/kg) of LHLPLP, whereas the remaining peptides accounted for 69.24 to 82.82 mg/kg. The half-maximal inhibitory concentration (IC50) values decreased from 7.92 ± 2.08 in undigested cheese to 3.20 ± 1.69 after in vitro gastrointestinal digestion. The 3-kDa WSE of digested cheeses were used to study the transport of the 8 ACE-I peptides across the monolayers of the Caco-2 cell culture grown on a semipermeable membrane of the transwells. After 1h of incubation, 649.20 ± 148.85 mg/kg of LHLPLP remained in the apical compartment, whereas VPP, IPP, AYFYPEL, AYFYPE, and HLPLP accounted in total for less than 36.78 mg/kg. On average, 0.6% of LHLPLP initially present in the digestates added to the apical compartment were transported intact to the basolateral chamber after the same incubation time. Higher transport rate (2.9%) was ascertained for the peptide HLPLP. No other intact ACE-I peptides were revealed in the basolateral compartment. For the first time, these results demonstrated that the ACE-I peptides HLPLP and LHLPLP present in the in vitro digestates of PR cheese are partially absorbed through an in vitro model of human intestinal epithelium.
Collapse
Affiliation(s)
- L Basiricò
- Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia (DAFNE), Università della Tuscia-Viterbo, via S. C. De Lellis, s.n.c., 01100, Viterbo, Italy
| | - E Catalani
- Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia (DAFNE), Università della Tuscia-Viterbo, via S. C. De Lellis, s.n.c., 01100, Viterbo, Italy
| | - P Morera
- Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia (DAFNE), Università della Tuscia-Viterbo, via S. C. De Lellis, s.n.c., 01100, Viterbo, Italy
| | - S Cattaneo
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via G. Celoria 2, 20133 Milano, Italy
| | - M Stuknytė
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via G. Celoria 2, 20133 Milano, Italy
| | - U Bernabucci
- Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia (DAFNE), Università della Tuscia-Viterbo, via S. C. De Lellis, s.n.c., 01100, Viterbo, Italy
| | - I De Noni
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via G. Celoria 2, 20133 Milano, Italy.
| | - A Nardone
- Dipartimento di Scienze e Tecnologie per l'Agricoltura, le Foreste, la Natura e l'Energia (DAFNE), Università della Tuscia-Viterbo, via S. C. De Lellis, s.n.c., 01100, Viterbo, Italy
| |
Collapse
|
23
|
Iwaniak A, Minkiewicz P, Darewicz M, Protasiewicz M, Mogut D. Chemometrics and cheminformatics in the analysis of biologically active peptides from food sources. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
24
|
Salampessy J, Reddy N, Kailasapathy K, Phillips M. Functional and potential therapeutic ACE-inhibitory peptides derived from bromelain hydrolysis of trevally proteins. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.02.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
25
|
Stuknytė M, Cattaneo S, Masotti F, De Noni I. Occurrence and fate of ACE-inhibitor peptides in cheeses and in their digestates following in vitro static gastrointestinal digestion. Food Chem 2015; 168:27-33. [DOI: 10.1016/j.foodchem.2014.07.045] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/30/2014] [Accepted: 07/07/2014] [Indexed: 11/25/2022]
|
26
|
Fan X, Bai L, Zhu L, Yang L, Zhang X. Marine algae-derived bioactive peptides for human nutrition and health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9211-22. [PMID: 25179496 DOI: 10.1021/jf502420h] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Within the parent protein molecule, most peptides are inactive, and they are released with biofunctionalities after enzymatic hydrolysis. Marine algae have high protein content, up to 47% of the dry weight, depending on the season and the species. Recently, there is an increasing interest in using marine algae protein as a source of bioactive peptides due to their health promotion and disease therapy potentials. This review presents an overview of marine algae-derived bioactive peptides and especially highlights some key issues, such as in silico proteolysis and quantitative structure-activity relationship studies, in vivo fate of bioactive peptides, and novel technologies in bioactive peptides studies and production.
Collapse
Affiliation(s)
- Xiaodan Fan
- College of Light Industry and Food Sciences, South China University of Technology , Guangzhou, China
| | | | | | | | | |
Collapse
|
27
|
|
28
|
Identification and characterization of a novel angiotensin I-converting enzyme inhibitory peptide (ACEIP) from silkworm pupa. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0138-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
29
|
|