1
|
Ibarlucea-Jerez M, Monnoye M, Chambon C, Gérard P, Licandro H, Neyraud E. Fermented food consumption modulates the oral microbiota. NPJ Sci Food 2024; 8:55. [PMID: 39174559 PMCID: PMC11341675 DOI: 10.1038/s41538-024-00298-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
Fermented food consumption is recommended for health and environmental purposes. While it is known to impact gut microbiota, further investigation is needed to establish connections with the oral microbiota. For this purpose, we investigated the effect of daily consumption of a model cheese containing 3 Lactic Acid Bacteria (LAB) species on the oral microbiota of rats following a 3-week diet. Cheese consumption transiently modifies the oral microbiota and leads to a transient persistence of LAB in the oral cavity of 1/3 of the animals. The origin of this variability was partly explained by an overrepresentation of salivary proteins involved in the response to oxidative stress in animals without LAB persistence. These findings highlight the significance of fermented foods in shaping the diversity of the oral microbiota. Additionally, they suggest that variations in the salivary proteome among individuals may influence the permissiveness of the oral microbiota towards exogenous microorganisms.
Collapse
Affiliation(s)
- M Ibarlucea-Jerez
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
- UMR A 02.102 Procédés Alimentaires et Microbiologiques (PAM), Institut Agro Dijon, Univ. Bourgogne Franche-Comté, Dijon, France
| | - M Monnoye
- Institut MICALIS, INRAE, AgroParisTech, Univ. Paris-Saclay, Jouy-en-Josas, France
| | - C Chambon
- Plateforme d'Exploration du Métabolisme Composante Protéomique (PFEMcp), INRAE, Saint-Genès Champanelle, France
- UR0370 Qualité des Produits Animaux (QuaPA), INRAE, Saint-Genès Champanelle, France
| | - P Gérard
- Institut MICALIS, INRAE, AgroParisTech, Univ. Paris-Saclay, Jouy-en-Josas, France
| | - H Licandro
- UMR A 02.102 Procédés Alimentaires et Microbiologiques (PAM), Institut Agro Dijon, Univ. Bourgogne Franche-Comté, Dijon, France
| | - E Neyraud
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France.
| |
Collapse
|
2
|
Jeong S, Jung JH, Jung KW, Ryu S, Lim S. From microbes to molecules: a review of microbial-driven antioxidant peptide generation. World J Microbiol Biotechnol 2023; 40:29. [PMID: 38057638 DOI: 10.1007/s11274-023-03826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023]
Abstract
Oxidative stress, arising from excess reactive oxygen species (ROS) or insufficient antioxidant defenses, can damage cellular components, such as lipids, proteins, and nucleic acids, resulting in cellular dysfunction. The relationship between oxidative stress and various health disorders has prompted investigations into potent antioxidants that counteract ROS's detrimental impacts. In this context, antioxidant peptides, composed of two to twenty amino acids, have emerged as a unique group of antioxidants and have found applications in food, nutraceuticals, and pharmaceuticals. Antioxidant peptides are sourced from natural ingredients, mainly proteins derived from foods like milk, eggs, meat, fish, and plants. These peptides can be freed from their precursor proteins through enzymatic hydrolysis, fermentation, or gastrointestinal digestion. Previously published studies focused on the origin and production methods of antioxidant peptides, describing their structure-activity relationship and the mechanisms of food-derived antioxidant peptides. Yet, the role of microorganisms hasn't been sufficiently explored, even though the production of antioxidant peptides frequently employs a variety of microorganisms, such as bacteria, fungi, and yeasts, which are recognized for producing specific proteases. This review aims to provide a comprehensive overview of microorganisms and their proteases participating in enzymatic hydrolysis and microbial fermentation to produce antioxidant peptides. This review also covers endogenous peptides originating from microorganisms. The information obtained from this review might guide the discovery of novel organisms adept at generating antioxidant peptides.
Collapse
Affiliation(s)
- Soyoung Jeong
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong-Hyun Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Kwang-Woo Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangyong Lim
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
- Department of Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
3
|
Feng Y, Wu W, Chen T, Huang M, Zhao M. Exploring the core functional microbiota related with flavor compounds in fermented soy sauce from different sources. Food Res Int 2023; 173:113456. [PMID: 37803780 DOI: 10.1016/j.foodres.2023.113456] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/29/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
Flavor, the most important quality index of soy sauce, is mostly influenced by the microbiota in fermented food ecosystem, however, the association between microorganisms and soy sauce flavor is still poorly understood. Therefore, the bacterial and fungal profiles, physicochemical parameters, and flavor compounds (9 organic acids, 17 free amino acids and 97 volatile flavor compounds) of 5 different source soy sauce were investigated using high-throughput sequencing, HPLC, amino acid analyzer and SPME/LLE-GC-MS, and their correlations were explored. A total of 3 fungal genera and 12 bacterial genera were identified as potential flavor-producing microorganisms by multivariate data and correlation analysis. Notably, Lactobacillus and Tetragenococcus were strongly positively correlated with succinic acid and lactic acid, respectively. Moreover, not only fungi, but also bacteria were found to be closely correlated with volatiles. Finally, 5 screened potential flavor-producing microorganisms were validated using a rapid fermentation model, with multiple strains showing the potential to improve the soy sauce flavor, with Lactobacillus fermentum being the most significant. Our research will provide a theoretical basis for the regulation and enhancement of soy sauce flavor.
Collapse
Affiliation(s)
- Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Weiyu Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Tao Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China.
| |
Collapse
|
4
|
Zou H, Wang H, Zhang Z, Lin H, Li Z. Immune regulation by fermented milk products: the role of the proteolytic system of lactic acid bacteria in the release of immunomodulatory peptides. Crit Rev Food Sci Nutr 2023; 64:10498-10516. [PMID: 37341703 DOI: 10.1080/10408398.2023.2225200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Food allergies have emerged as a pressing health concern in recent years, largely due to food resources and environmental changes. Dairy products fermented by lactic acid bacteria play an essential role in mitigating allergic diseases. Lactic acid bacteria have been found to possess a distinctive proteolytic system comprising a cell envelope protease (CEP), transporter system, and intracellular peptidase. Studying the impact of different Lactobacillus proteolytic systems on the destruction of milk allergen epitopes and their potential to alleviate allergy symptoms by releasing peptides containing immune regulatory properties is a valuable and auspicious research approach. This paper summarizes the proteolytic systems of different species of lactic acid bacteria, especially the correlation between CEPs and the epitopes from milk allergens. Furthermore, the mechanism of immunomodulatory peptide release was also concluded. Finally, further research on the proteolytic system of lactic acid bacteria will provide additional clinical evidence for the possible treatment and/or prevention of allergic diseases with specific fermented milk/dairy products in the future.
Collapse
Affiliation(s)
- Hao Zou
- College of Food Science and Engineering, Ocean University of China, Qigndao, P.R. China
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, Qigndao, P.R. China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, Qigndao, P.R. China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qigndao, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qigndao, P.R. China
| |
Collapse
|
5
|
Olvera-Rosales LB, Pérez-Escalante E, Castañeda-Ovando A, Contreras-López E, Cruz-Guerrero AE, Regal-López P, Cardelle-Cobas A, González-Olivares LG. ACE-Inhibitory Activity of Whey Proteins Fractions Derived of Fermentation by Lacticaseibacillus rhamnosus GG and Streptococcus thermophilus SY-102. Foods 2023; 12:2416. [PMID: 37372627 DOI: 10.3390/foods12122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Many studies have reported the benefits of probiotic microorganisms and the production of angiotensin-converting enzyme (ACE) inhibitors. Determining the proteolytic and ACE inhibition capacities during whey fermentation was the goal of the study. Lacticaseibacillus rhamnosus GG, Streptococcus thermophilus SY-102, and both bacteria together were initially inoculated into whey, reaching an initial concentration of 108 CFU per milliliter in each fermentation system. Through the use of TNBS, SDS-PAGE, and SEC-HPLC methods, the proteolytic profile was examined. An in vitro investigation was performed to test the ACE inhibition capacity. With S. thermophilus, the logarithmic phase of microbial development was shorter than with L. rhamnosus (6 and 12 h, respectively). The logarithmic phase in the co-culture fermentation, however, was extended to 24 h. There were no significant differences in pH between the fermentations. However, the co-culture had a greater concentration of protein hydrolysis (453 ± 0.06 μg/mL), as indicated by the amount of free amino groups. Similarly, this fermentation produced more low molecular weight peptides. The higher inhibition activity, which increased at the conclusion of the fermentation with the co-culture and reached 53.42%, was influenced by the higher peptide synthesis. These findings highlighted the significance of creating useful co-culture products.
Collapse
Affiliation(s)
- Laura Berenice Olvera-Rosales
- Área Académica de Química, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo 420390, Mexico
| | - Emmanuel Pérez-Escalante
- Área Académica de Química, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo 420390, Mexico
| | - Araceli Castañeda-Ovando
- Área Académica de Química, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo 420390, Mexico
| | - Elizabeth Contreras-López
- Área Académica de Química, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo 420390, Mexico
| | - Alma Elizabeth Cruz-Guerrero
- Departamento de Biotecnología, División de Ciencias Biológicas y de la Salud, Unidad Iztapalapa, Universidad Autónoma Metropolitana, Ciudad de México 09340, Mexico
| | - Patricia Regal-López
- Laboratorio de Higiene, Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade da Santiago de Compostela, 27002 Lugo, Spain
| | - Alejandra Cardelle-Cobas
- Laboratorio de Higiene, Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade da Santiago de Compostela, 27002 Lugo, Spain
| | - Luis Guillermo González-Olivares
- Área Académica de Química, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo 420390, Mexico
| |
Collapse
|
6
|
Roux E, Nicolas A, Valence F, Siekaniec G, Chuat V, Nicolas J, Le Loir Y, Guédon E. The genomic basis of the Streptococcus thermophilus health-promoting properties. BMC Genomics 2022; 23:210. [PMID: 35291951 PMCID: PMC8925076 DOI: 10.1186/s12864-022-08459-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Background Streptococcus thermophilus is a Gram-positive bacterium widely used as starter in the dairy industry as well as in many traditional fermented products. In addition to its technological importance, it has also gained interest in recent years as beneficial bacterium due to human health-promoting functionalities. The objective of this study was to inventory the main health-promoting properties of S. thermophilus and to study their intra-species diversity at the genomic and genetic level within a collection of representative strains. Results In this study various health-related functions were analyzed at the genome level from 79 genome sequences of strains isolated over a long time period from diverse products and different geographic locations. While some functions are widely conserved among isolates (e.g., degradation of lactose, folate production) suggesting their central physiological and ecological role for the species, others including the tagatose-6-phosphate pathway involved in the catabolism of galactose, and the production of bioactive peptides and gamma-aminobutyric acid are strain-specific. Most of these strain-specific health-promoting properties seems to have been acquired via horizontal gene transfer events. The genetic basis for the phenotypic diversity between strains for some health related traits have also been investigated. For instance, substitutions in the galK promoter region correlate with the ability of some strains to catabolize galactose via the Leloir pathway. Finally, the low occurrence in S. thermophilus genomes of genes coding for biogenic amine production and antibiotic resistance is also a contributing factor to its safety status. Conclusions The natural intra-species diversity of S. thermophilus, therefore, represents an interesting source for innovation in the field of fermented products enriched for healthy components that can be exploited to improve human health. A better knowledge of the health-promoting properties and their genomic and genetic diversity within the species may facilitate the selection and application of strains for specific biotechnological and human health-promoting purpose. Moreover, by pointing out that a substantial part of its functional potential still defies us, our work opens the way to uncover additional health-related functions through the intra-species diversity exploration of S. thermophilus by comparative genomics approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08459-y.
Collapse
Affiliation(s)
- Emeline Roux
- INRAE, Institut Agro, STLO, Rennes, France.,Université de Lorraine, CALBINOTOX, Nancy, France.,Université de Rennes, INRIA, Campus de Beaulieu, Rennes, France
| | | | | | - Grégoire Siekaniec
- INRAE, Institut Agro, STLO, Rennes, France.,Université de Rennes, INRIA, Campus de Beaulieu, Rennes, France
| | | | - Jacques Nicolas
- Université de Rennes, INRIA, Campus de Beaulieu, Rennes, France
| | | | | |
Collapse
|
7
|
Milk Fermentation by Lacticaseibacillus rhamnosus GG and Streptococcus thermophilus SY-102: Proteolytic Profile and ACE-Inhibitory Activity. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Health benefits of probiotics and production of inhibitors of angiotensin converting enzyme (ACE) released during milk fermentation are well known. That is why in this investigation the proteolytic profile and ACE inhibitory capacity of peptide fractions from protein hydrolysis of milk during fermentation processes was analyzed. Milk fermentation was carried out inoculating 106 CFU of L. rhamnosus GG, S. thermophilus SY-102 and with both bacteria. The proteolytic profile was determined using: TNBS, SDS-PAGE and SEC-HPLC techniques. In vitro ACE inhibition capacity was measured. The pH of 4.5 was reached at 56 h when the milk was fermented with L. rhamnosus, at 12 h with S. thermophillus and at 41 h in the co-culture. Production of free amino groups corresponded with the profile of low molecular weight peptides observed by SDS-PAGE and SEC-HPLC. Co-culture fermentation showed both the highest concentration of low molecular weight peptides and the ACE inhibitory activity (>80%). Results indicated that the combination of lactic cultures could be useful in manufacture of fermented milk with an added value that goes beyond basic nutrition, such as the production of ACE-inhibitory peptides.
Collapse
|
8
|
Characteristics of the Proteolytic Enzymes Produced by Lactic Acid Bacteria. Molecules 2021; 26:molecules26071858. [PMID: 33806095 PMCID: PMC8037685 DOI: 10.3390/molecules26071858] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Over the past several decades, we have observed a very rapid development in the biotechnological use of lactic acid bacteria (LAB) in various branches of the food industry. All such areas of activity of these bacteria are very important and promise enormous economic and industrial successes. LAB are a numerous group of microorganisms that have the ability to ferment sugars into lactic acid and to produce proteolytic enzymes. LAB proteolytic enzymes play an important role in supplying cells with the nitrogen compounds necessary for their growth. Their nutritional requirements in this regard are very high. Lactic acid bacteria require many free amino acids to grow. The available amount of such compounds in the natural environment is usually small, hence the main function of these enzymes is the hydrolysis of proteins to components absorbed by bacterial cells. Enzymes are synthesized inside bacterial cells and are mostly secreted outside the cell. This type of proteinase remains linked to the cell wall structure by covalent bonds. Thanks to advances in enzymology, it is possible to obtain and design new enzymes and their preparations that can be widely used in various biotechnological processes. This article characterizes the proteolytic activity, describes LAB nitrogen metabolism and details the characteristics of the peptide transport system. Potential applications of proteolytic enzymes in many industries are also presented, including the food industry.
Collapse
|
9
|
Ji D, Ma J, Xu M, Agyei D. Cell-envelope proteinases from lactic acid bacteria: Biochemical features and biotechnological applications. Compr Rev Food Sci Food Saf 2020; 20:369-400. [PMID: 33443792 DOI: 10.1111/1541-4337.12676] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/27/2020] [Accepted: 10/30/2020] [Indexed: 01/25/2023]
Abstract
Proteins displayed on the cell surface of lactic acid bacteria (LAB) perform diverse and important biochemical roles. Among these, the cell-envelope proteinases (CEPs) are one of the most widely studied and most exploited for biotechnological applications. CEPs are important players in the proteolytic system of LAB, because they are required by LAB to degrade proteins in the growth media into peptides and/or amino acids required for the nitrogen nutrition of LAB. The most important area of application of CEPs is therefore in protein hydrolysis, especially in dairy products. Also, the physical location of CEPs (i.e., being cell-envelope anchored) allows for relatively easy downstream processing (e.g., extraction) of CEPs. This review describes the biochemical features and organization of CEPs and how this fits them for the purpose of protein hydrolysis. It begins with a focus on the genetic organization and expression of CEPs. The catalytic behavior and cleavage specificities of CEPs from various LAB are also discussed. Following this, the extraction and purification of most CEPs reported to date is described. The industrial applications of CEPs in food technology, health promotion, as well as in the growing area of water purification are discussed. Techniques for improving the production and catalytic efficiency of CEPs are also given an important place in this review.
Collapse
Affiliation(s)
- Dawei Ji
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Jingying Ma
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Min Xu
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Toldrá F, Gallego M, Reig M, Aristoy MC, Mora L. Recent Progress in Enzymatic Release of Peptides in Foods of Animal Origin and Assessment of Bioactivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12842-12855. [PMID: 32157886 DOI: 10.1021/acs.jafc.9b08297] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There is a wide variety of peptides released from food proteins that are able to exert a relevant benefit for human health, such as angiotensin-converting enzyme inhibition, antioxidant, anti-inflammatory, hypoglucemic, or antithrombotic activity, among others. This manuscript is reviewing the recent advances on enzymatic mechanisms for the hydrolysis of proteins from foods of animal origin, including the types of enzymes and mechanisms of action involved, the strategies followed for the isolation and identification of bioactive peptides through advanced proteomic tools, and the assessment of bioactivity and its beneficial effects. Specific applications in fermented and/or ripened foods where a significant number of bioactive peptides have been reported with relevant in vivo physiological effects on laboratory rats and humans as well as the hydrolysis of animal food proteins for the production of bioactive peptides are also reviewed.
Collapse
Affiliation(s)
- Fidel Toldrá
- Instituto de Agroquímica y Tecnologı́a de Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), 46980 Paterna, Valencia, Spain
| | - Marta Gallego
- Instituto de Agroquímica y Tecnologı́a de Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), 46980 Paterna, Valencia, Spain
| | - Milagro Reig
- Instituto de Ingenierı́a de Alimentos para el Desarrollo, Universitat Politècnica de Valencia, 46022 Valencia, Valencia, Spain
| | - María-Concepción Aristoy
- Instituto de Agroquímica y Tecnologı́a de Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), 46980 Paterna, Valencia, Spain
| | - Leticia Mora
- Instituto de Agroquímica y Tecnologı́a de Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), 46980 Paterna, Valencia, Spain
| |
Collapse
|
11
|
Fan M, Guo T, Li W, Chen J, Li F, Wang C, Shi Y, Li DXA, Zhang S. Isolation and identification of novel casein-derived bioactive peptides and potential functions in fermented casein with Lactobacillus helveticus. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Daliri EBM, Ofosu FK, Chelliah R, Park MH, Kim JH, Oh DH. Development of a Soy Protein Hydrolysate with an Antihypertensive Effect. Int J Mol Sci 2019; 20:ijms20061496. [PMID: 30934634 PMCID: PMC6470933 DOI: 10.3390/ijms20061496] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 01/14/2023] Open
Abstract
In this study, we combined enzymatic hydrolysis and lactic acid fermentation to generate an antihypertensive product. Soybean protein isolates were first hydrolyzed by Prozyme and subsequently fermented with Lactobacillus rhamnosus EBD1. After fermentation, the in vitro angiotensin-converting enzyme (ACE) inhibitory activity of the product (P-SPI) increased from 60.8 ± 2.0% to 88.24 ± 3.2%, while captopril (a positive control) had an inhibitory activity of 94.20 ± 5.4%. Mass spectrometry revealed the presence of three potent and abundant ACE inhibitory peptides, PPNNNPASPSFSSSS, GPKALPII, and IIRCTGC in P-SPI. Hydrolyzing P-SPI with gastrointestinal proteases did not significantly affect its ACE inhibitory ability. Also, oral administration of P-SPI (200 mg/kg body weight) to spontaneous hypertensive rats (SHRs) for 6 weeks significantly lowered systolic blood pressure (-19 ± 4 mm Hg, p < 0.05) and controlled body weight gain relative to control SHRs that were fed with physiological saline. Overall, P-SPI could be used as an antihypertensive functional food.
Collapse
Affiliation(s)
- Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea.
| | - Fred Kwame Ofosu
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea.
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea.
| | - Mi Houn Park
- Erom Company Limited, R&D Center, 111, Toegye Nonggong-ro, Chuncheon-si, Gangwon-do 24427, Korea.
| | - Jong-Hak Kim
- Erom Company Limited, R&D Center, 111, Toegye Nonggong-ro, Chuncheon-si, Gangwon-do 24427, Korea.
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea.
| |
Collapse
|
13
|
Hafeez Z, Cakir-Kiefer C, Lecomte X, Miclo L, Dary-Mourot A. The X-prolyl dipeptidyl-peptidase PepX of Streptococcus thermophilus initially described as intracellular is also responsible for peptidase extracellular activity. J Dairy Sci 2018; 102:113-123. [PMID: 30391182 DOI: 10.3168/jds.2018-14823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/12/2018] [Indexed: 11/19/2022]
Abstract
This study addresses the hypothesis that the extracellular cell-associated X-prolyl dipeptidyl-peptidase activity initially described in Streptococcus thermophilus could be attributable to the intracellular X-prolyl dipeptidyl-peptidase PepX. For this purpose, a PepX-negative mutant of S. thermophilus LMD-9 was constructed by interrupting the pepX gene and named LMD-9-ΔpepX. When cultivated, the S. thermophilus LMD-9 wild type strain grew more rapidly than its ΔpepX mutant counterpart. Thus, the growth rate of the LMD-9-ΔpepX strain was reduced by a factor of 1.5 and 1.6 in milk and LM17 medium (M17 medium supplemented with 2% lactose), respectively. The negative effect of the PepX inactivation on the hydrolysis of β-casomorphin-7 was also observed. Indeed, when incubated with this peptide, the LMD-9-ΔpepX mutant cells were unable to hydrolyze it, whereas this peptide was completely degraded by the S. thermophilus LMD-9 wild type cells. This hydrolysis was not due to leakage of intracellular PepX, as no peptide hydrolysis was highlighted in cell-free filtrate of wild type strain. Therefore, based on these results, it can be presumed that though lacking an export signal, the intracellular PepX might have accessed the β-casomorphin-7 externally, perhaps via its galactose-binding domain-like fold, this domain being known to help enzymes bind to several proteins and substrates. Therefore, the identification of novel distinctive features of the proteolytic system of S. thermophilus will further enhance its credibility as a starter in milk fermentation.
Collapse
Affiliation(s)
- Zeeshan Hafeez
- Université de Lorraine, Composés Alimentaires: Biofonctionnalités et Risques Neurotoxiques (CALBINOTOX), F-54000, Nancy, France
| | - Céline Cakir-Kiefer
- Université de Lorraine, INRA, Unité de Recherche Animal et Produits Animaux (URAFPA), F-54000, Nancy, France
| | - Xavier Lecomte
- Université de Lorraine, Composés Alimentaires: Biofonctionnalités et Risques Neurotoxiques (CALBINOTOX), F-54000, Nancy, France
| | - Laurent Miclo
- Université de Lorraine, Composés Alimentaires: Biofonctionnalités et Risques Neurotoxiques (CALBINOTOX), F-54000, Nancy, France
| | - Annie Dary-Mourot
- Université de Lorraine, Composés Alimentaires: Biofonctionnalités et Risques Neurotoxiques (CALBINOTOX), F-54000, Nancy, France.
| |
Collapse
|
14
|
Dalziel J, Smolenski G, McKenzie C, Haines S, Day L. Differential effects of sheep and cow skim milk before and after fermentation on gastrointestinal transit of solids in a rat model. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
15
|
Antihypertensive peptides from whey proteins fermented by lactic acid bacteria. Food Sci Biotechnol 2018; 27:1781-1789. [PMID: 30483443 DOI: 10.1007/s10068-018-0423-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/17/2018] [Accepted: 06/03/2018] [Indexed: 01/14/2023] Open
Abstract
In this study, whey proteins were fermented with 34 lactic acid bacteria for 48 h at 37 °C and their ability to inhibit angiotensin 1-converting enzyme (ACE) activity were compared. All the lactic acid bacteria displayed varying proteolytic abilities in whey. Their fermentates also displayed varying abilities to inhibit ACE in vitro. Seven fermentates showed strong ACE inhibitory abilities between 84.70 ± 0.67 and 52.40 ± 2.1% with IC50 values between 19.78 ± 1.73 and 2.13 ± 0.7 mg/ml. Pediococcus acidilactici SDL1414 showed the strongest ACE inhibitory activity of 84.7 ± 0.67% (IC50 = 19.78 ± 1.73 μg/ml). Mass spectrometry revealed that more than half (57.7%) of the low molecular weight peptides (< 7 kDa) in the P. acidilactici SDL1414 fermented samples were ACE inhibitory peptides. Our results show that P. acidilactici SDL1414 could be used as a starter culture in the dairy industry to develop antihypertensive functional foods for hypertension management.
Collapse
|
16
|
Daliri EBM, Lee BH, Park MH, Kim JH, Oh DH. Novel angiotensin I-converting enzyme inhibitory peptides from soybean protein isolates fermented by Pediococcus pentosaceus SDL1409. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
17
|
κ-Casein as a source of short-chain bioactive peptides generated by Lactobacillus helveticus. Journal of Food Science and Technology 2017; 54:3679-3688. [PMID: 29051663 DOI: 10.1007/s13197-017-2830-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/10/2017] [Accepted: 08/23/2017] [Indexed: 02/06/2023]
Abstract
This paper explores the ability of Lactobacillus helveticus strains to release sequences of short biologically active peptides (containing 2-10 amino acid residues) from casein. The proteolytic enzymes of the tested strains exhibit different patterns of cleavage of CN fractions. The modification of κ-casein (κ-CN) with pyrrolidone carboxylic acid inhibits the proteolytic activity of strains L. helveticus 141 and the reference strain (DSMZ 20075), while the modification with phosphothreonine inhibits enzymes of all the tested bacteria. The peptide sequencing analysis indicated that the examined strains produced functional peptides very efficiently. κ-CN proved to be the main source of short peptides released by bacterial enzymes, and the hydrolysis of κ-CN yielded eighty-two bioactive peptides. The hydrolysis of αS2-casein, αS1-casein, and β-casein yielded six, two, and one short-chain bioactive peptides, respectively. The isolated bioactive peptides exhibited antioxidative, opioid, stimulating, hypotensive, immunomodulating, antibacterial, and antithrombotic activities. A vast majority of the isolated bioactive peptides caused inhibition of the angiotensin-converting enzyme and dipeptidyl peptidase IV. The role of hydrolysis products as neuropeptides is also pointed out. The highest number of cleavage sites in κ-casein and functional activities of short-chain peptides were obtained in hydrolyzates produced by L. helveticus strain T105.
Collapse
|
18
|
Zhang DD, Liu JL, Jiang TM, Li L, Fang GZ, Liu YP, Chen LJ. Influence of Kluyveromyces marxianus on proteins, peptides, and amino acids in Lactobacillus-fermented milk. Food Sci Biotechnol 2017; 26:739-748. [PMID: 30263599 DOI: 10.1007/s10068-017-0094-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/19/2017] [Accepted: 02/03/2017] [Indexed: 12/01/2022] Open
Abstract
With increasing application of yeast in fermented milk, in order to study the effect of yeast on milk protein during the fermentation process, the effects of the presence of Kluyveromyces marxianus in milk fermented by Streptococcus thermophilus and Lactobacillus bulgaricus were investigated. After fermentation, the amino acid, protein, and peptide contents were analyzed by ultra-performance liquid chromatography, two-dimensional gel electrophoresis, and liquid chromatography-mass spectrometry, respectively. After the addition of K. marxianus for fermentation, 25 protein spots changed significantly. These were mostly caseins and bovine serum proteins, and the content of total free amino acids increased by 16.30%; ten types of bioactive peptides were identified. Furthermore, the number of peptide types in milk fermented by K. marxianus increased significantly compared with milk fermented by Lactobacillus. K. marxianus is considered to promote proteometabolism in milk when added with Lactobacillus, generate flavor compounds, and improve the digestion and absorption character of milk.
Collapse
Affiliation(s)
- Dong-Dong Zhang
- 1Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, 300457 China.,National Health Engineering Research Center for Maternal and Infant Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing, 466001 China
| | - Jing-Lan Liu
- National Health Engineering Research Center for Maternal and Infant Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing, 466001 China
| | - Tie-Min Jiang
- National Health Engineering Research Center for Maternal and Infant Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing, 466001 China
| | - Lu Li
- National Health Engineering Research Center for Maternal and Infant Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing, 466001 China
| | - Guo-Zhen Fang
- 1Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Yan-Pin Liu
- National Health Engineering Research Center for Maternal and Infant Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing, 466001 China
| | - Li-Jun Chen
- National Health Engineering Research Center for Maternal and Infant Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing, 466001 China
| |
Collapse
|
19
|
|
20
|
|
21
|
El Hatmi H, Jrad Z, Khorchani T, Jardin J, Poirson C, Perrin C, Cakir-Kiefer C, Girardet JM. Identification of bioactive peptides derived from caseins, glycosylation-dependent cell adhesion molecule-1 (GlyCAM-1), and peptidoglycan recognition protein-1 (PGRP-1) in fermented camel milk. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Oh NS, Lee JY, Oh S, Joung JY, Kim SG, Shin YK, Lee KW, Kim SH, Kim Y. Improved functionality of fermented milk is mediated by the synbiotic interaction between Cudrania tricuspidata leaf extract and Lactobacillus gasseri strains. Appl Microbiol Biotechnol 2016; 100:5919-32. [DOI: 10.1007/s00253-016-7414-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 12/30/2022]
|
23
|
Uriot O, Galia W, Awussi AA, Perrin C, Denis S, Chalancon S, Lorson E, Poirson C, Junjua M, Le Roux Y, Alric M, Dary A, Blanquet-Diot S, Roussel Y. Use of the dynamic gastro-intestinal model TIM to explore the survival of the yogurt bacterium Streptococcus thermophilus and the metabolic activities induced in the simulated human gut. Food Microbiol 2016; 53:18-29. [DOI: 10.1016/j.fm.2015.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 02/28/2015] [Accepted: 05/21/2015] [Indexed: 01/21/2023]
|
24
|
Ha GE, Chang OK, Jo SM, Han GS, Park BY, Ham JS, Jeong SG. Identification of Antihypertensive Peptides Derived from Low Molecular Weight Casein Hydrolysates Generated during Fermentation by Bifidobacterium longum KACC 91563. Korean J Food Sci Anim Resour 2015; 35:738-47. [PMID: 26877633 PMCID: PMC4726953 DOI: 10.5851/kosfa.2015.35.6.738] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/25/2015] [Accepted: 08/03/2015] [Indexed: 11/13/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) inhibitory activity was evaluated for the low-molecular-weight fraction (<3 kDa) obtained from milk fermentation by Bifidobacterium longum KACC91563. The ACE inhibitory activity in this fraction was 62.3%. The peptides generated from the <3 kDa fraction were identified by liquid chromatography-electrospray ionization quantitative time-of-flight mass spectrometry analysis. Of the 28 peptides identified, 11 and 16 were identified as β-casein (CN) and αs1-CN, respectively. One peptide was identified as κ-CN. Three peptides, YQEPVLGPVRGPFPIIV, QEPVLGPVRGPFPIIV, and GPVRGPFPIIV, from β-CN corresponded to known antihypertensive peptides. We also found 15 peptides that were identified as potential antihypertensive peptides because they included a known antihypertensive peptide fragment. These peptides were as follows: RELEELNVPGEIVE (f1-14), YQEPVLGPVRGPFP (f193-206), EPVLGPVRGPFPIIV (f195-206), PVLGPVRGPFPIIV (f196-206), VLGPVRGPFPIIV (f197-206), and LGPVRGPFPIIV (f198-206) for β-CN; and APSFSDIPNPIGSENSEKTTMPLW (f176-199), SFSDIPNPIGSENSEKT- TMPLW (f178-199), FSDIPNPIGSENSEKTTMPLW (f179-199), SDIPNPIGSENSEKTTMPLW (f180-199), DIPNPIGSENSEKTTMPLW (f181-199), IPNPIGSENSEKTTMPLW (f182-199), PIGSENSEKTTMPLW (f185-199), IGSENSEKTTMPLW (f186-199), and SENSEKTTMPLW (f188-199) for αs1-CN. From these results, B. longum could be used as a starter culture in combination with other lactic acid bacteria in the dairy industry, and/or these peptides could be used in functional food manufacturing as additives for the development of a product with beneficial effects for human health.
Collapse
Affiliation(s)
- Go Eun Ha
- Animal Products Research and Development Division, National Institute of Animal Science, RDA, Jeonju 55365, Korea
| | - Oun Ki Chang
- Animal Products Research and Development Division, National Institute of Animal Science, RDA, Jeonju 55365, Korea; Imported Food Analysis Division, Ministry of Food and Drug Safety, Gwangju 61012, Korea
| | - Su-Mi Jo
- Animal Products Research and Development Division, National Institute of Animal Science, RDA, Jeonju 55365, Korea
| | - Gi-Sung Han
- Animal Products Research and Development Division, National Institute of Animal Science, RDA, Jeonju 55365, Korea
| | - Beom-Young Park
- Animal Products Research and Development Division, National Institute of Animal Science, RDA, Jeonju 55365, Korea
| | - Jun-Sang Ham
- Animal Products Research and Development Division, National Institute of Animal Science, RDA, Jeonju 55365, Korea
| | - Seok-Geun Jeong
- Animal Products Research and Development Division, National Institute of Animal Science, RDA, Jeonju 55365, Korea
| |
Collapse
|