1
|
Koňuchová M, Boháčiková A, Valík Ľ. Characterisation of the surface growth of Mucor circinelloides in cheese agar media using predictive mathematical models. Heliyon 2024; 10:e30812. [PMID: 38765159 PMCID: PMC11101853 DOI: 10.1016/j.heliyon.2024.e30812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024] Open
Abstract
The main objective of this work was to characterise the mycelial growth of Mucor circinelloides, one of the fungal contaminants that appear frequently in the artisan cheese production environment. The study uses primary Baranyi and Huang models to compare their parameters and predict M. circinelloides on cheese-based medium (CBA) under diverse environmental conditions (temperature range from 6 to 37 °C and 0 and 1 % NaCl concentration). However, the Baranyi model consistently estimated longer lag phases and higher surface growth rates (sgr) than the Huang model; both models showed adequate best-fit performance (exactly with the mean coefficient of determination R2 = (0.993 ± 0.020 × 10-1). The groups of primary growth parameters were analysed against temperature using the cardinal model (CM) with the following main outputs. The optimal surface growth rates (sgropt) on CBA were 6.8 and 6.5 mm/d calculated with the Baranyi and Huang models, respectively. They were reduced by approximately 46 % on the surface of the agar medium when 1 % NaCl was added. Topt was estimated in a very narrow range of 32.1-32.5 °C from both primary sgr data sets (0 % and 1 % NaCl). Similarly, Tmax values of 37.2 °C and 37.3 °C were estimated for the Baranyi and Huang models, respectively; however, they decreased at 2 °C in CBA with 1 % NaCl (Tmax = 35.1 °C). The application of CM for sgr provided an estimation of the parameter Tmin with negative values that are considered only as a theoretical output. The results provide insight into the modelling and prediction of fungi growth as a function of time and salt concentration, including the times to detect visible mycelial growth of Mucor circinelloides. The mere quantification of this phenomenon can be useful for practice. Adjusting the frequency of the cheese surface washing step with a salt solution at the early stage of ripening properly can prevent the growth of not only fast fungal growers.
Collapse
Affiliation(s)
- Martina Koňuchová
- Institute of Food Sciences and Nutrition, Faculty of Chemical and Food Technology, Slovak University of Technology Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia
| | - Agáta Boháčiková
- Institute of Food Sciences and Nutrition, Faculty of Chemical and Food Technology, Slovak University of Technology Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia
| | - Ľubomír Valík
- Institute of Food Sciences and Nutrition, Faculty of Chemical and Food Technology, Slovak University of Technology Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia
| |
Collapse
|
2
|
Visagie CM, Magistà D, Ferrara M, Balocchi F, Duong TA, Eichmeier A, Gramaje D, Aylward J, Baker SE, Barnes I, Calhoun S, De Angelis M, Frisvad JC, Hakalova E, Hayes RD, Houbraken J, Grigoriev IV, LaButti K, Leal C, Lipzen A, Ng V, Pangilinan J, Pecenka J, Perrone G, Piso A, Savage E, Spetik M, Wingfield MJ, Zhang Y, Wingfield BD. IMA genome-F18 : The re-identification of Penicillium genomes available in NCBI and draft genomes for Penicillium species from dry cured meat, Penicillium biforme, P. brevicompactum, P. solitum, and P. cvjetkovicii, Pewenomyces kutranfy, Pew. lalenivora, Pew. tapulicola, Pew. kalosus, Teratosphaeria carnegiei, and Trichoderma atroviride SC1. IMA Fungus 2023; 14:21. [PMID: 37803441 PMCID: PMC10559472 DOI: 10.1186/s43008-023-00121-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 10/08/2023] Open
Affiliation(s)
- Cobus M Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Donato Magistà
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via G. Amendola 122/O, 70126, Bari, Italy
| | - Massimo Ferrara
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via G. Amendola 122/O, 70126, Bari, Italy
| | - Felipe Balocchi
- Department of Plant and Soil Sciences, FABI, University of Pretoria, Pretoria, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Ales Eichmeier
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas - Universidad de la Rioja - Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071, Logroño, Spain
| | - David Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas - Universidad de la Rioja - Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071, Logroño, Spain
| | - Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Conservation Ecology and Entomology, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Scott E Baker
- Functional and Systems Biology Group, Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- DOE Joint Bioenergy Institute, Emeryville, CA, 94608, USA
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Sara Calhoun
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Via G. Amendola 165/a, 70126, Bari, Italy
| | - Jens C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs, Lyngby, Denmark
| | - Eliska Hakalova
- Mendeleum - Institute of Genetics, Mendel University in Brno, Valticka 334, 691 44, Lednice, Czech Republic
| | - Richard D Hayes
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, 110 Koshland Hall, Berkeley, CA, 94720, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Catarina Leal
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas - Universidad de la Rioja - Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071, Logroño, Spain
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Vivian Ng
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Jakub Pecenka
- Mendeleum - Institute of Genetics, Mendel University in Brno, Valticka 334, 691 44, Lednice, Czech Republic
| | - Giancarlo Perrone
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via G. Amendola 122/O, 70126, Bari, Italy
| | - Anja Piso
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emily Savage
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Milan Spetik
- Mendeleum - Institute of Genetics, Mendel University in Brno, Valticka 334, 691 44, Lednice, Czech Republic
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Yu Zhang
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
3
|
Tabla R, Roa I. Use of gaseous ozone in soft cheese ripening: Effect on the rind microorganisms and the sensorial quality. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Marion V, Van Long Nicolas N, Jean-Luc J, Thibaud B, Audrey P, Georges B, Karim R, Valérie V, Véronique H, Louis C. Impact of water activity on the radial growth of fungi in a dairy environment. Food Res Int 2022; 157:111247. [DOI: 10.1016/j.foodres.2022.111247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 11/17/2022]
|
5
|
Penicillium commune affects textural properties and water distribution of hard and extra-hard cheeses. J DAIRY RES 2020; 87:117-122. [PMID: 31948491 DOI: 10.1017/s0022029919000906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We analyzed the effects of growth of Penicillium commune, one of the most frequent fungal species associated with cheese, on the water diffusion and texture of hard and extra-hard cheeses. A total of 36 hard cheese blocks and 36 extra-hard cheese blocks were manufactured, salted at different levels (0.5, 1.25 and 2% w/w), and assigned to different treatments (control and inoculated). Cheese texture was analyzed using a penetration needle probe at 2 and 5 weeks after ripening. Firmness, defined as the maximum force detected in the penetration probe, was higher in both hard and extra-hard inoculated cheese blocks compared with the control. In addition, the presence of fungal growth on cheese rind increased the total work of penetration (a measure of resistance to probe penetration), but only in extra-hard cheeses, suggesting that the moisture of cheese might be affecting the growth capacities and performance of P. commune. The change in textural properties of cheeses was linked to desiccation of the upper 0.5-cm rind layer mediated by P. commune.
Collapse
|
6
|
|
7
|
Ramos-Pereira J, Mareze J, Patrinou E, Santos JA, López-Díaz TM. Polyphasic identification of Penicillium spp. isolated from Spanish semi-hard ripened cheeses. Food Microbiol 2019; 84:103253. [PMID: 31421787 DOI: 10.1016/j.fm.2019.103253] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/19/2019] [Accepted: 06/27/2019] [Indexed: 11/17/2022]
Abstract
Fifteen samples of semi-hard ripened cheeses, both spoiled (10) and unspoiled (5), and obtained from cheese factories located in Northwest of Spain, were analysed by a dilution plating technique and direct sampling. A total of 32 isolates were identified at species level by a polyphasic approach (phenotypic characterization, partial extrolite analysis and molecular identification). Most isolates (65.6%) belonged to the species P. commune; other species found were P. solitum, P. chrysogenum, P. nordicum, P. expansum and P. cvjetkovicii. All of the P. commune isolates were able to produce cyclopiazonic acid, while the P. nordicum and the P. expansum isolates were producers of ochratoxin A and patulin respectively. Despite this, the role of P. commune as beneficial fungi in cheese ripening should be investigated. Molecular identification based on BenA sequence analysis was able to identify the majority of isolates. The three mycotoxins investigated can be considered key for identification. The polyphasic approach seems to be a very valuable tool for identification of isolates of this complex genus.
Collapse
Affiliation(s)
- Juliana Ramos-Pereira
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain.
| | - Juliana Mareze
- Department of Veterinary and Preventive Medicine, University of Londrina, Brazil.
| | - Eleni Patrinou
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain.
| | - Jesús A Santos
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain.
| | - Teresa-María López-Díaz
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain.
| |
Collapse
|
8
|
Anelli P, Peterson SW, Haidukowski M, Logrieco AF, Moretti A, Epifani F, Susca A. Penicillium gravinicasei, a new species isolated from cave cheese in Apulia, Italy. Int J Food Microbiol 2018; 282:66-70. [PMID: 29929177 DOI: 10.1016/j.ijfoodmicro.2018.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/30/2018] [Accepted: 06/08/2018] [Indexed: 12/01/2022]
Abstract
Several species of the genus Penicillium were isolated during a survey of the mycobiota of Apulian cave cheeses ripened in a cave in Gravina di Puglia, Italy. A novel species, Penicillium gravinicasei, is described in Penicillium section Cinnamopurpurea. Its taxonomic novelty was determined using a polyphasic approach, combining phenotypic, molecular (β-tubulin, calmodulin, ITS and DNA dependent RNA polymerase) DNA sequences and mycotoxin production data. Phylogenetic analyses of the RPB2 data showed that isolates of the novel species form a clade most closely related to Penicillium cinnamopurpureum and P. parvulum with high bootstrap support. The fungus did not produce ochratoxin A, citrinin, patulin, sterigmatocystin or aflatoxin B1 on standard agar media. The novel species had a high growth rate on agar media supplemented with 5% NaCl, and could be distinguished from other Penicillium section Cinnamopurpurea species by phenotypic and molecular characteristics.
Collapse
Affiliation(s)
- Pamela Anelli
- Institute of Sciences of Food Production, National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Steve W Peterson
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL 61604, USA
| | - Miriam Haidukowski
- Institute of Sciences of Food Production, National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Antonio F Logrieco
- Institute of Sciences of Food Production, National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Filomena Epifani
- Institute of Sciences of Food Production, National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Antonia Susca
- Institute of Sciences of Food Production, National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|
9
|
Jurado M, Ruiz-Navarro P. Effects of fungal growth on the firmness of a cheese analogue formulated with different casein-to-fat ratios. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Modelling the effect of water activity reduction by sodium chloride or glycerol on conidial germination and radial growth of filamentous fungi encountered in dairy foods. Food Microbiol 2017; 68:7-15. [PMID: 28800827 DOI: 10.1016/j.fm.2017.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/10/2017] [Accepted: 06/16/2017] [Indexed: 01/30/2023]
Abstract
Water activity (aw) is one of the most influential abiotic factors affecting fungal development in foods. The effects of aw reduction on conidial germination and radial growth are generally studied by supplementing culture medium with the non-ionic solute glycerol despite food aw can also depend on the concentration of ionic solutes such as sodium chloride (NaCl). The present study aimed at modelling and comparing the effects of aw, either modified using NaCl or glycerol, on radial growth and/or conidial germination parameters for five fungal species occurring in the dairy environment. The estimated cardinal values were then used for growth prediction and compared to growth kinetics observed on commercial fresh cheese. Overall, as compared to glycerol, NaCl significantly increased the fungistatic effect resulting from aw reduction by extending latency and/or reducing radial growth rates of Paecilomyces niveus, Penicillium brevicompactum, Penicillium expansum and Penicillium roqueforti but not of Mucor lanceolatus. Besides, NaCl significantly reduced aw range for conidial germination and delayed median germination time of P. expansum but not of P. roqueforti. Despite these observations, cardinal aw values obtained on glycerol-medium yielded similar predictions of radial growth and germination time in commercial fresh cheese as those obtained with NaCl. Thus, it indicates that, for the studied species and aw range used for model validation, the use of NaCl instead of glycerol as a aw depressor had only limited impact for fungal behavior prediction.
Collapse
|
11
|
Camardo Leggieri M, Decontardi S, Bertuzzi T, Pietri A, Battilani P. Modeling Growth and Toxin Production of Toxigenic Fungi Signaled in Cheese under Different Temperature and Water Activity Regimes. Toxins (Basel) 2016; 9:E4. [PMID: 28029129 PMCID: PMC5308237 DOI: 10.3390/toxins9010004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to investigate in vitro and model the effect of temperature (T) and water activity (aw) conditions on growth and toxin production by some toxigenic fungi signaled in cheese. Aspergillus versicolor, Penicillium camemberti, P. citrinum, P. crustosum, P. nalgiovense, P. nordicum, P. roqueforti, P. verrucosum were considered they were grown under different T (0-40 °C) and aw (0.78-0.99) regimes. The highest relative growth occurred around 25 °C; all the fungi were very susceptible to aw and 0.99 was optimal for almost all species (except for A. versicolor, awopt = 0.96). The highest toxin production occurred between 15 and 25 °C and 0.96-0.99 aw. Therefore, during grana cheese ripening, managed between 15 and 22 °C, ochratoxin A (OTA), penitrem A (PA), roquefortine-C (ROQ-C) and mycophenolic acid (MPA) are apparently at the highest production risk. Bete and logistic function described fungal growth under different T and aw regimes well, respectively. Bete function described also STC, PA, ROQ-C and OTA production as well as function of T. These models would be very useful as starting point to develop a mechanistic model to predict fungal growth and toxin production during cheese ripening and to help advising the most proper setting of environmental factors to minimize the contamination risk.
Collapse
Affiliation(s)
- Marco Camardo Leggieri
- Department of Sustainable Crop Production-Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122 Piacenza, Italy.
| | - Simone Decontardi
- Department of Sustainable Crop Production-Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122 Piacenza, Italy.
| | - Terenzio Bertuzzi
- Institute of Food & Feed Science and Nutrition-Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122 Piacenza, Italy.
| | - Amedeo Pietri
- Institute of Food & Feed Science and Nutrition-Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122 Piacenza, Italy.
| | - Paola Battilani
- Department of Sustainable Crop Production-Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122 Piacenza, Italy.
| |
Collapse
|
12
|
Morin-Sardin S, Jany JL, Artigaud S, Pichereau V, Bernay B, Coton E, Madec S. Proteomic analysis of the adaptative response of Mucor spp. to cheese environment. J Proteomics 2016; 154:30-39. [PMID: 27940316 DOI: 10.1016/j.jprot.2016.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/27/2016] [Accepted: 12/02/2016] [Indexed: 12/27/2022]
Abstract
In the cheese industry context, Mucor species exhibit an ambivalent behavior as some species are essential "technological" organisms of some cheeses while others can be spoiling agents. Previously, we observed that cheese "technological" species exhibited higher optimal growth rates on cheese related matrices than on synthetic media. This growth pattern combined with morphological differences raise the question of their adaptation to cheese. In this study, using a comparative proteomic approach, we described the metabolic pathways of three Mucor strains considered as "technological" or "contaminant" in the cheese environment (M. lanceolatus UBOCC-A-109153, M. racemosus UBOCC-A-109155, M. circinelloides CBS 277-49) as well as a non-cheese related strain (M. endophyticus CBS 385-95). Overall, 15.8 to 19.0% of the proteomes showed a fold change ≥1.6 in Potato Dextrose Agar (PDA) versus Cheese Agar (CA), a cheese mimicking-medium. The 289 differentially expressed proteins identified by LC MS-MS analysis were mostly assigned to energy and amino-acid metabolisms in PDA whereas a higher diversity of biological processes was observed for cheese related strains in CA. Surprisingly, the vast majority (72.9%) of the over-accumulated proteins were different according to the considered medium and strain. These results strongly suggest that the observed better adaptative response of "technological" strains to cheese environment is mediated by species-specific proteins. BIOLOGICAL SIGNIFICANCE The Mucor genus consists of a multitude of poorly known species. In the food context, few species are known for their positive role in the production of various food products, including cheese, while others are spoiling agents. The present study focused on the analysis of morphological and proteome differences of various Mucor spp. representative strains known as either positively (hereafter referred as "technological") or negatively (hereafter referred as "contaminant") associated with cheese or non-related to cheese (endophyte) on two different media, a synthetic medium and a cheese-mimicking medium. The main goal was to assess if adaptative traits of "technological" strains to the cheese environment could be identified. This work was based on observations we did in a recently published physiological study (Morin-Sardin et al., 2016). One of the important innovative aspects lies in the use for the first time of an extensive 2-DE approach to compare proteome variations for 4 strains on two different media. Results obtained offered an insight in the metabolic mechanisms associated with growth on a given medium and showed that adaptation to cheese environment is probably supported by species-specific proteins. The obtained data represent an essential step point for more targeted studies at the genomic and transcriptomic levels.
Collapse
Affiliation(s)
- Stéphanie Morin-Sardin
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Jean-Luc Jany
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Sébastien Artigaud
- Université de Brest, UMR 6539, Laboratoire des Sciences de l'Environnement Marin, LEMAR CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, 29280 Plouzané, France
| | - Vianney Pichereau
- Université de Brest, UMR 6539, Laboratoire des Sciences de l'Environnement Marin, LEMAR CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, 29280 Plouzané, France
| | - Benoît Bernay
- Plateforme Proteogen SFR ICORE, Université de Caen Basse-Normandie, 14032 Caen Cedex, France
| | - Emmanuel Coton
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Stéphanie Madec
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|
13
|
Morin-Sardin S, Rigalma K, Coroller L, Jany JL, Coton E. Effect of temperature, pH, and water activity on Mucor spp. growth on synthetic medium, cheese analog and cheese. Food Microbiol 2015; 56:69-79. [PMID: 26919819 DOI: 10.1016/j.fm.2015.11.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/10/2015] [Accepted: 11/30/2015] [Indexed: 11/29/2022]
Abstract
The Mucor genus includes a large number of ubiquitous fungal species. In the dairy environment, some of them play a technological role providing typical organoleptic qualities to some cheeses while others can cause spoilage. In this study, we compared the effect of relevant abiotic factors for cheese production on the growth of six strains representative of dairy technological and contaminant species as well as of a non cheese related strain (plant endophyte). Growth kinetics were determined for each strain in function of temperature, water activity and pH on synthetic Potato Dextrose Agar (PDA), and secondary models were fitted to calculate the corresponding specific cardinal values. Using these values and growth kinetics acquired at 15 °C on cheese agar medium (CA) along with three different cheese types, optimal growth rates (μopt) were estimated and consequently used to establish a predictive model. Contrarily to contaminant strains, technological strains showed higher μopt on cheese matrices than on PDA. Interestingly, lag times of the endophyte strain were strongly extended on cheese related matrices. This study offers a relevant predictive model of growth that may be used for better cheese production control but also raises the question of adaptation of some Mucor strains to the cheese.
Collapse
Affiliation(s)
- Stéphanie Morin-Sardin
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest Iroise, 29280 Plouzané, France
| | - Karim Rigalma
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest Iroise, 29280 Plouzané, France
| | - Louis Coroller
- Université de Brest, EA3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT Spore Risk, IUT Quimper, 6 Rue de l'Université, 29334 Quimper, France
| | - Jean-Luc Jany
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest Iroise, 29280 Plouzané, France
| | - Emmanuel Coton
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest Iroise, 29280 Plouzané, France.
| |
Collapse
|
14
|
Expanding the species and chemical diversity of Penicillium section Cinnamopurpurea. PLoS One 2015; 10:e0121987. [PMID: 25853891 PMCID: PMC4390383 DOI: 10.1371/journal.pone.0121987] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/06/2015] [Indexed: 11/19/2022] Open
Abstract
A set of isolates very similar to or potentially conspecific with an unidentified Penicillium isolate NRRL 735, was assembled using a BLAST search of ITS similarity among described (GenBank) and undescribed Penicillium isolates in our laboratories. DNA was amplified from six loci of the assembled isolates and sequenced. Two species in section Cinnamopurpurea are self-compatible sexual species, but the asexual species had polymorphic loci suggestive of sexual reproduction and variation in conidium size suggestive of ploidy level differences typical of heterothallism. Accordingly we use genealogical concordance analysis, a technique valid only in heterothallic organisms, for putatively asexual species. Seven new species were revealed in the analysis and are described here. Extrolite analysis showed that two of the new species, P. colei and P. monsserratidens produce the mycotoxin citreoviridin that has demonstrated pharmacological activity against human lung tumors. These isolates could provide leads in pharmaceutical research.
Collapse
|
15
|
Marín P, Palmero D, Jurado M. Occurrence of moulds associated with ovine raw milk and cheeses of the Spanish region of Castilla La Mancha. INT J DAIRY TECHNOL 2015. [DOI: 10.1111/1471-0307.12208] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patricia Marín
- Department of Genetics; Faculty of Biology; Complutense University of Madrid; José Antonio Nováis 12 Madrid 28040 Spain
| | - Daniel Palmero
- Department of Plant Production: Botany and Plant Protection; EUIT Agrícola; Technical University of Madrid; Ciudad Universitaria s/n Madrid 28040 Spain
| | - Miguel Jurado
- Department of Science and Technology applied to Agricultural Engineering; EUIT Agrícola; Technical University of Madrid; Ciudad Universitaria s/n Madrid 28040 Spain
| |
Collapse
|