1
|
Segura J, Fernández-Valle ME, Cruz-Díaz KP, Romero-de-Ávila MD, Castejón D, Remiro V, Cambero MI. Magnetic Resonance Imaging (MRI) of Spanish Sheep Cheese: A Study on the Relationships between Ripening Times, Geographical Origins, Textural Parameters, and MRI Parameters. Foods 2024; 13:3225. [PMID: 39456287 PMCID: PMC11507292 DOI: 10.3390/foods13203225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The evolution of structural changes and the textural features during the ripening process of four varieties of Spanish sheep cheese were studied using Magnetic Resonance Imaging (MRI). Specifically, longitudinal (T1) and transverse (T2) relaxation times and apparent diffusion coefficient maps were analyzed. Also, proton density was used to improve the description of the structure of the cheeses. The MRI results displayed important information about cheese matrix structure, associated with different manufacturing processes (industrial vs. traditional), ripening times (RTs, from 2 to 180 days), and geographical origins. A significant interaction between RT and cheese variety related to the variations in physicochemical and textural parameters was found. Linear regression models were developed per the abundant literature. Logarithmic regression models showed the highest R2 when monitoring the dependency on T1 and T2 parameters of water content, water activity, RT, and some texture parameters. Therefore, these results support that MRI is a useful technology to monitor the ripening process, predict textural behavior and physicochemical variables, and characterize the structure of different varieties of sheep cheese.
Collapse
Affiliation(s)
- José Segura
- Food Technology Department, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain (M.D.R.-d.-Á.); (V.R.); (M.I.C.)
| | - María Encarnación Fernández-Valle
- ICTS Complutense Bioimaging (BioImac), Research Assistance Centre, Complutense University of Madrid, 28040 Madrid, Spain; (M.E.F.-V.); (D.C.)
| | - Karen Paola Cruz-Díaz
- Food Technology Department, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain (M.D.R.-d.-Á.); (V.R.); (M.I.C.)
| | - María Dolores Romero-de-Ávila
- Food Technology Department, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain (M.D.R.-d.-Á.); (V.R.); (M.I.C.)
| | - David Castejón
- ICTS Complutense Bioimaging (BioImac), Research Assistance Centre, Complutense University of Madrid, 28040 Madrid, Spain; (M.E.F.-V.); (D.C.)
| | - Víctor Remiro
- Food Technology Department, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain (M.D.R.-d.-Á.); (V.R.); (M.I.C.)
| | - María Isabel Cambero
- Food Technology Department, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain (M.D.R.-d.-Á.); (V.R.); (M.I.C.)
| |
Collapse
|
2
|
Abarquero D, Duque C, Bodelón R, López I, Muñoz J, María Fresno J, Eugenia Tornadijo M. Autochthonous cultures to improve the quality of PGI Castellano cheese: Impact on proteolysis, microstructure and texture during ripening. Food Res Int 2024; 186:114306. [PMID: 38729707 DOI: 10.1016/j.foodres.2024.114306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/06/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
The aim of this research was to find out the effect of different combinations of starter and non-starter cultures on the proteolysis of Castellano cheese during ripening. Four cheese batches were prepared, each containing autochthonous lactobacilli and or Leuconostoc, and were compared with each other and with a control batch, that used only a commercial starter. To achieve this, nitrogen fractions (pH 4.4-soluble nitrogen and 12 % trichloroacetic acid soluble nitrogen, polypeptide nitrogen and casein nitrogen), levels of free amino acids and biogenic amines were assessed. Texture and microstructure of cheeses were also evaluated. Significant differences in nitrogen fractions were observed between batches at different stages of ripening. The free amino acid content increased throughout the cheese ripening process, with a more significant increase occurring after the first 30 days. Cheeses containing non-starter lactic acid bacteria exhibited the highest values at the end of the ripening period. Among the main amino acids, GABA was particularly abundant, especially in three of the cheese batches at the end of ripening. The autochthonous lactic acid bacteria were previously selected as non-producers of biogenic amines and this resulted in the absence of these compounds in the cheeses. Analysis of the microstructure of the cheese reflected the impact of proteolysis. Additionally, the texture profile analysis demonstrated that the cheese's hardness intensified as the ripening period progressed. The inclusion of autochthonous non-starter lactic acid bacteria in Castellano cheese production accelerated the proteolysis process, increasing significantly the free amino acids levels and improving the sensory quality of the cheeses.
Collapse
Affiliation(s)
- Daniel Abarquero
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, Universidad de León, 24071 León, Spain
| | - Cristina Duque
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, Universidad de León, 24071 León, Spain
| | - Raquel Bodelón
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, Universidad de León, 24071 León, Spain
| | - Inés López
- Department of Innovation and Product Development, Queserías Entrepinares. Avenida de Santander 140, 47011 Valladolid, Spain
| | - Julio Muñoz
- Department of Innovation and Product Development, Queserías Entrepinares. Avenida de Santander 140, 47011 Valladolid, Spain
| | - José María Fresno
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, Universidad de León, 24071 León, Spain
| | - María Eugenia Tornadijo
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, Universidad de León, 24071 León, Spain.
| |
Collapse
|
3
|
Grape Pomace in Ewes Diet Affects Metagenomic Profile, Volatile Compounds and Biogenic Amines Contents of Ripened Cheese. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The main objective of this research was to evaluate the development of volatile organic compounds (VOCs) and the accumulation of biogenic amines (BAs) in relation to the dynamic of microbial population composition in fresh and ripened cheese produced from raw milk of ewes fed a diet containing grape pomace (GP+) and fed a standard diet (Ctrl). Genomic DNA was extracted from the cheeses at 2 (T2), 60 (T60), 90 (T90) and 120 (T120) days of ripening and prepared for 16S rRNA-gene sequencing to characterize the cheese microbiota; furthermore, VOCs were determined via solid-phase microextraction combined with gas chromatography-mass spectrometry and biogenic amines by HPLC analyses. Diet did not affect the relative abundance of the main phyla identified, Proteobacteria characterized T2 samples, but the scenario changed during the ripening. At genus level, Pseudomonas, Chryseobacterium and Acinetobacter were the dominant taxa, however, a lower percentage of Pseudomonas was detected in GP+ cheeses. Enterococcus became dominant in ripened cheeses followed in Ctrl cheeses by Lactobacillus and in GP+ cheeses by Lactococcus. The diet affected the development of carboxylic acids and ketones but not of aldehydes. Low levels of esters were identified in all the samples. In total, four biogenic amines were determined in cheeses samples and their levels differed between the two groups and during ripening time. In 60, T90 and T120 GP+ cheeses, a lower amount of 2-phenylethylamine was found compared to Ctrl. Putrescine was detected only in GP+ samples and reached the highest level at 120 days. Conversely, the amount of cadaverine in GP+ samples was invariable during the ripening. The concentration of tyramine in GP+ samples was compared to Ctrl during the ripening. Overall, significant positive correlations between some families of bacteria and the formation of VOCs and BAs were found.
Collapse
|
4
|
Munekata PES, Chaves-Lopez C, Fernandez-Lopez J, Viuda-Martos M, Sayas-Barbera ME, Perez-Alvarez JA, Lorenzo JM. Autochthonous Starter Cultures in Cheese Production – A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2097691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | - Clemencia Chaves-Lopez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Juana Fernandez-Lopez
- IPOA Research Group. Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernandez University, Alicante, Spain
| | - Manuel Viuda-Martos
- IPOA Research Group. Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernandez University, Alicante, Spain
| | - María Estrella Sayas-Barbera
- IPOA Research Group. Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernandez University, Alicante, Spain
| | - José Angel Perez-Alvarez
- IPOA Research Group. Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernandez University, Alicante, Spain
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
- Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, Ourense, España
| |
Collapse
|
5
|
Moniente M, Botello-Morte L, García-Gonzalo D, Pagán R, Ontañón I. Analytical strategies for the determination of biogenic amines in dairy products. Compr Rev Food Sci Food Saf 2022; 21:3612-3646. [PMID: 35726745 DOI: 10.1111/1541-4337.12980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/08/2022] [Accepted: 04/30/2022] [Indexed: 12/18/2022]
Abstract
Biogenic amines (BA) are mainly produced by the decarboxylation of amino acids by enzymes from microorganisms that emerge during food fermentation or due to incorrectly applied preservation processes. The presence of these compounds in food can lead to a series of negative effects on human health. To prevent the ingestion of high amounts of BA, their concentration in certain foods needs to be controlled. Although maximum legal levels have not yet been established for dairy products, potential adverse effects have given rise to a substantial number of analytical and microbiological studies: they report concentrations ranging from a few mg/kg to several g/kg. This article provides an overview of the analytical methods for the determination of biogenic amines in dairy products, with particular focus on the most recent and/or most promising advances in this field. We not only provide a summary of analytical techniques but also list the required sample pretreatments. Since high performance liquid chromatography with derivatization is the most widely used method, we describe it in greater detail, including a comparison of derivatizing agents. Further alternative techniques for the determination of BA are likewise described. The use of biosensors for BA in dairy products is emerging, and current results are promising; this paper thus also features a section on the subject. This review can serve as a helpful guideline for choosing the best option to determine BA in dairy products, especially for beginners in the field.
Collapse
Affiliation(s)
- Marta Moniente
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Laura Botello-Morte
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Rafael Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Ignacio Ontañón
- Laboratorio de Análisis del Aroma y Enología, Química Analítica, Facultad de Ciencias, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| |
Collapse
|
6
|
Darnay L, Miklós G, Lőrincz A, Szakmár K, Pásztor-Huszár K, Laczay P. Possible inhibitory effect of microbial transglutaminase on the formation of biogenic amines during Trappist cheese ripening. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:580-587. [PMID: 35084293 DOI: 10.1080/19440049.2021.2005831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Trappist cheese (semi-hard, rennet-coagulated cheese with round eyes) was manufactured and matured for 4 weeks at 12 ± 1°C, 85% relative humidity (RH). The effect of microbial transglutaminase (MTGase) was followed by measuring the levels of free amino acids (FAAs) and biogenic amines (BAs) every 2 weeks during 4 weeks of cheese ripening. Results show that MTGase can decrease the cadaverine production by 30%, but only at the initial stage of ripening. Application of MTGase results in 49% less putrescine, 12% less tyramine production at the end of 4 weeks ripening time, and can decrease histamine levels by 8% after 2 weeks of ripening time in the examined semi-hard cheese type.
Collapse
Affiliation(s)
- Lívia Darnay
- Department of Food Hygiene, University of Veterinary Medicine, Budapest, Hungary
| | | | - Anna Lőrincz
- National Food Chain Safety Office, Budapest, Hungary
| | - Katalin Szakmár
- Department of Food Hygiene, University of Veterinary Medicine, Budapest, Hungary
| | - Klára Pásztor-Huszár
- Institute of Food Science and Technology, Department of Livestock Products and Food Preservation Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Péter Laczay
- Department of Food Hygiene, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
7
|
Sheep’s milk cheeses as a source of bioactive compounds. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2021. [DOI: 10.2478/aucft-2021-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Since ancient times, sheep`s milk cheeses have been a part of a human diet. Currently, their consumption is of great interest due to its nutritional and health values. The aim of the article was to review the chemical composition of sheep’s milk cheeses and its main bioactive ingredients in the context of nutritional and health values. Sheep’s milk cheeses are rich in functionally and physiologically active compounds such as: vitamins, minerals, fatty acids, terpenes, sialic acid, orotic acid and L-carnitine, which are largely originate from milk. Fermentation and maturation process additionally enrich them in other bioactive substances as: bioactive peptides, γ-aminobutyric acid (GABA) or biogenic amines. Studies show that sheep’s milk cheese consumption may be helpful in the prevention of civilization diseases, i.e. hypertension, obesity or cancer. However, due to the presence of biogenic amines, people with metabolic disorders should be careful of their intake.
Collapse
|
8
|
Biogenic Amine Content in Retailed Cheese Varieties Produced with Commercial Bacterial or Mold Cultures. Processes (Basel) 2021. [DOI: 10.3390/pr10010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Biogenic amines (BAs) are considered a potential microbiological toxicological hazard in aged cheese. Risk mitigation strategies include good hygiene practice measures, thermal treatment of milk and the use of competitive dairy cultures. The aim of this study was to evaluate the amount of BAs—tryptamine, β-phenylethylamine, putrescine, cadaverine, histamine, tyramine, spermidine and spermine—in the core and rind of cheeses ripened by bacteria (n = 61) and by mold cultures (n = 8). The microbial communities were counted, and the dominant lactic acid bacteria (LAB) were identified, corresponding to the BA concentrations. The total BA content was highest in the core of semi-hard cheeses (353.98 mg/kg), followed by mold cheeses (248.99 mg/kg) and lowest in hard cheeses (157.38 mg/kg). The highest amount of BAs was present in the rind of cheeses with mold (240.52 mg/kg), followed by semi-hard (174.99 mg/kg) and hard cheeses (107.21 mg/kg). Tyramine was the most abundant BA, represented by 75.4% in mold cheeses, 41.3% in hard cheese and 35% of total BAs in semi-hard cheeses. Histamine was present above the defined European maximum level (ML) of 100 mg/kg in only two semi-hard and three hard cheeses. High amount of BAs (above 600 mg/kg) in cheeses, mainly tyramine, were associated with the presence of Enterococcus durans, while negligible BA concentrations were found in cheeses ripened with Lacticaseibacillus rhamnosus, Lactococcus lactis or Lacticaseibacillus paracasei cultures. This study has shown that retailed cheese varieties produced with commercial bacterial or mold cultures have acceptable levels of biogenic amines with respect to consumers.
Collapse
|
9
|
Garbowska M, Berthold-Pluta A, Stasiak-Różańska L, Pluta A. The Impact of the Adjunct Heat-Treated Starter Culture and Lb. helveticus LH-B01 on the Proteolysis and ACE Inhibitory Activity in Dutch-Type Cheese Model during Ripening. Animals (Basel) 2021; 11:ani11092699. [PMID: 34573665 PMCID: PMC8464792 DOI: 10.3390/ani11092699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Adjunct cultures are used in cheesemaking to improve flavour characteristics and accelerating cheese ripening. Different adjunct cultures are capable of producing enzymes with the specificity to hydrolyze caseins, leading to the release of various bioactive compounds. We studied the effect of adjunct heat-treated starter XT–312 and a cheese culture Lb. helveticus LH-B01 on selected physicochemical, microbiological properties, and on proteolysis in cheese models. Additionally, the effect of adjunct cultures on ACE inhibitory activity during ripening was determined. The application of adjunct cultures may be used as functional ingredients in Dutch-type cheese to maintain sufficient bioactive properties and improve proteolysis. Abstract Adjunct cultures are used in cheesemaking to improve the sensory characteristics of the ripened cheeses. In addition, it is known that different adjunct cultures are capable of producing enzymes with the specificity to hydrolyze caseins, leading to the release of various bioactive compounds (bioactive peptides, amino acids, etc.). The objective of this study was to evaluate the effect of adjunct heat-treated starter XT–312 and a cheese culture Lb. helveticus LH-B01 on the proteolytic activity and angiotensin converting enzymes inhibitors (ACE) in cheese models during ripening. Seven different cheese models were evaluated for: proteolytic activity using the spectrophotometric method with ortho-phthaldialdehyde (OPA), soluble nitrogen (SN), trichloroacetic acid-soluble nitrogen (TCA-SN) phosphotungstic acid-soluble nitrogen (PTA-SN), total nitrogen (TN), pH, contents of water, fat, as well as for total bacteria count (TBC), count of Lactococcus genus bacteria, count of Lb. helveticus, and number of non-starter lactic acid bacteria (NSLAB). Presence of adjunct bacterial cultures both in the form of a cheese culture LH-B01 and heat-treated XT–312 starter promoted primary and secondary proteolysis, which resulted in acceleration of the ripening process. ACE inhibitory activity and proteolytic activity was the highest throughout of ripening for cheese model with LH-B01 culture. The cheese models with the adjunct heat-treated starter were characterized by lower TBC, NSLAB and lower count of Lactococcus genus bacteria during ripening, compared to control cheeses.
Collapse
|
10
|
Renes E, Fernández D, Abarquero D, Ladero V, Álvarez MA, Tornadijo ME, Fresno JM. Effect of forage type, season, and ripening time on selected quality properties of sheep milk cheese. J Dairy Sci 2021; 104:2539-2552. [PMID: 33455752 DOI: 10.3168/jds.2020-19036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/19/2020] [Indexed: 01/16/2023]
Abstract
The aim of this research was to study changes in the microbial populations, free AA profile, biogenic amine content, and sensory characteristics of ripened cheeses (100 and 180 d) produced in different seasons (summer, autumn, winter, and spring) from pasteurized sheep milk from 8 commercial flocks fed hay or silage diets. Twenty-one individual AA and 6 biogenic amines were determined by ultra-high performance liquid chromatography. Type of conserved forage for sheep feeding did not affect the variables studied, which is of great interest because hay and silage are low-cost ingredients for sheep feeding. Proteolysis led total free AA concentrations ranging between 35,179.26 and 138,063.71 mg/kg of cheese at 180 d of ripening. γ-Aminobutyric acid, which has been associated with beneficial effects on human health, was the second most abundant AA in all cheese samples, accounting for 15% of total free AA. Spring cheeses showed 2-fold higher concentrations of γ-aminobutyric acid than summer and autumn cheeses at the end of ripening. Overall, spring, winter, and autumn cheeses had lower average concentration of biogenic amines (431.99 mg/kg of cheese) than summer cheeses (825.70 mg/kg of cheese) as well as better sensory characteristics. Therefore, this study could provide the dairy industry with useful information for producing cheeses with valuable nutritional and sensory quality for consumers.
Collapse
Affiliation(s)
- E Renes
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of León, 24071, León, Spain
| | - D Fernández
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of León, 24071, León, Spain
| | - D Abarquero
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of León, 24071, León, Spain
| | - V Ladero
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300, Villaviciosa, Asturias, Spain
| | - M A Álvarez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300, Villaviciosa, Asturias, Spain
| | - M E Tornadijo
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of León, 24071, León, Spain
| | - J M Fresno
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of León, 24071, León, Spain.
| |
Collapse
|
11
|
Garbowska M, Pluta A, Berthold-Pluta A. Contents of Functionally Bioactive Peptides, Free Amino Acids, and Biogenic Amines in Dutch-Type Cheese Models Produced with Different Lactobacilli. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25225465. [PMID: 33266479 PMCID: PMC7700546 DOI: 10.3390/molecules25225465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/05/2022]
Abstract
Cheese ripening involves a number of biochemical processes, mainly of a proteolytic nature, which are initially triggered principally by milk-coagulating enzymes and, afterward, by microorganisms or enzymes of microbial origin. The proteolytic reactions affect, primarily, the synthesis of macro- and medium-molecular peptides from casein. In turn, the advanced proteolysis ends in the formation of short peptides and free amino acids. Further reactions may lead to the formation of nutritionally unfavorable biogenic amines. The present study aimed to determine changes in the contents of bioactive peptides (anserine and L-carnosine), free amino acids, and biogenic amines throughout the ripening of cheese models produced with the addition of Lactobacillus genus bacteria. The contents of amino acids varied considerably in the cheese models, depending on the bacterial strain added and ripening time. After five weeks of ripening, the total content of free amino acids in the cheese models ranged from 611.02 (a cheese model with Lactobacillus casei 2639) to 1596.64 mg kg−1 (a cheese model with Lb. acidophilus 2499). After the same time, the contents of the total biogenic amines in the cheese models with the addition of lactobacilli were lower than in the control cheese model (except for the model with Lb. rhamnosus 489). Anserine was detected in all cheese models (79.29–119.02 mg kg−1), whereas no L-carnosine was found over a five-week ripening period in the cheese models with Lb. delbrueckii 490 and Lb. casei 2639. After a five-week ripening, the highest total content of bioactive peptides was determined in the cheese models containing Lb. acidophilus 2499 (136.11 mg kg−1).
Collapse
|
12
|
Asahina Y, Hagi T, Kobayashi M, Narita T, Sasaki K, Tajima A, Nomura M. Expression profiles of milk proteolysis-related genes in Lactobacillus paracasei EG9, a non-starter lactic acid bacterial strain, during Gouda-type cheese ripening. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Poveda JM, Jiménez L, Perea JM, Arias R, Palop ML. Farming Practices Influence Antibiotic Resistance and Biogenic Amine Capacity of Staphylococci from Bulk Tank Ewe's Milk. Animals (Basel) 2020; 10:E1622. [PMID: 32927840 PMCID: PMC7552206 DOI: 10.3390/ani10091622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023] Open
Abstract
Staphylococci are one of the main microorganisms responsible for intramammary infections in sheep, causing important economic losses for farmers and eventually health problems in humans, especially by the consumption of dairy products made with raw milk containing toxic compounds, such as biogenic amines or antibiotic resistant bacteria. This study aimed to check the presence and safety of staphylococci in bulk tank ewe's milk from different farms, and to determine the relationship between the presence of these staphylococci and farming practices, by applying nonlinear canonical correlation models (OVERALS). Two-hundred and fifty-nine staphylococci from milk samples from eighteen farms were genotyped and representative isolates of the major clusters were identified as belonging to Staphylococcus (S.) aureus, S. epidermidis, S. arlettae, S. lentus, S. simulans, and S. chromogenes species. Identified isolates were assayed in terms of their safety, by evaluating resistance to antimicrobial drugs and the aminobiogenic capacity, using both phenotypic and genetic assays. Antibiotic resistance phenotypic assay revealed that 82.9% were resistant to some antibiotics, although in the genotypic assay only the genes tetM, ermB, ermC, and grlA were detected. Fifty-three percent were high biogenic amine (BA) producers, being putrescine the most produced amine. A lowered risk of finding antibiotic-resistant and BA-producing staphylococci is related to some farming methods such as enrolling in a breeding program, use of good farming practices, postdipping teat disinfection, hygienic livestock housing, or periodic check of the milking machine.
Collapse
Affiliation(s)
- Justa María Poveda
- Department of Analytical Chemistry and Food Technology, Regional Institute of Applied Scientific Research (IRICA)/Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Camilo José Cela, 1B, 13071 Ciudad Real, Spain;
| | - Lorena Jiménez
- Regional Center of Animal Selection and Reproduction (CERSYRA), Agri-food and Forestry Regional Research and Development Center (IRIAF), JCCM, 13300 Valdepeñas, Spain;
| | - José Manuel Perea
- Department of Animal Production, Faculty of Veterinary, University of Cordoba, Campus Rabanales, 14071 Córdoba, Spain;
| | - Ramón Arias
- Regional Center of Animal Selection and Reproduction (CERSYRA), Agri-food and Forestry Regional Research and Development Center (IRIAF), JCCM, 13300 Valdepeñas, Spain;
| | - María Llanos Palop
- Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III, s/n, 45071 Toledo, Spain;
| |
Collapse
|
14
|
Wang J, Lu S, Wang Q, Guo X, He J. Effects of starter cultures on lipid oxidation and accumulation of biogenic amines in traditional Chinese smoked horsemeat sausage. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Shiling Lu
- Food College Shihezi University Shihezi China
| | | | - Xin Guo
- Food College Shihezi University Shihezi China
| | - Jialiang He
- School of Food and Bioengineering Henan University of Science and Technology Luoyang China
| |
Collapse
|
15
|
Impact of Nisin-Producing Strains of Lactococcus lactis on the Contents of Bioactive Dipeptides, Free Amino Acids, and Biogenic Amines in Dutch-Type Cheese Models. MATERIALS 2020; 13:ma13081835. [PMID: 32295031 PMCID: PMC7215581 DOI: 10.3390/ma13081835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 11/29/2022]
Abstract
The goal of this study was to determine changes in contents of free amino acids, biogenic amines, and bioactive dipeptides (anserine and L-carnosine) in cheese models produced with the addition of nisin-producing strains of Lactococcus lactis over their ripening period. After 5 weeks of ripening, contents of total biogenic amines in the cheese models with the addition of L. lactis strains were lower than in the control cheese model. The cheese models examined differed significantly in contents of free amino acids through the ripening period. Individual free amino acids, such as ornithine, were found in some of the cheese models, which is indicative of their specific microbial activities. Both anserine and L-carnosine were detected in all variants of the cheese models. After 5-week ripening, the highest total content of bioactive dipeptides was determined in the cheese models produced with the nisin-producing culture of L. lactis 11454 (142.15 mg∙kg−1).
Collapse
|
16
|
Saidi V, Sheikh-Zeinoddin M, Kobarfard F, Soleimanian-Zad S. Bioactive characteristics of a semi-hard non-starter culture cheese made from raw or pasteurized sheep's milk. 3 Biotech 2020; 10:85. [PMID: 32089980 PMCID: PMC7000560 DOI: 10.1007/s13205-020-2075-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/18/2020] [Indexed: 02/07/2023] Open
Abstract
In this study, the effect of pasteurization and use of starter cultures on physicochemical, microbiological and functional properties of a traditional Iranian semi-hard cheese (Lighvan cheese) was evaluated during stages of ripening (1, 60, 120 days). Profiles of polar metabolites were analyzed by gas-chromatography mass-spectrometry (GC-MS). Considerable free amino acids such as gamma-aminobutyric acid (GABA) were found in samples that have higher microbial communities i.e. raw sheep's milk without use of starter cultures and pasteurized sheep's milk cheese with co-culture. However, GABA was not found in pasteurized sheep's milk cheese without starter culture during ripening. Conclusively, the application of the starter culture could reduce the ripening time of sheep's milk cheese and could be an appropriate approach to increase the functionality of the sheep's milk cheese.
Collapse
Affiliation(s)
- Vahideh Saidi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | - Mahmoud Sheikh-Zeinoddin
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | - Farzad Kobarfard
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 11369 Tehran, Iran
| | - Sabihe Soleimanian-Zad
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, 84156-83111 Isfahan, Iran
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| |
Collapse
|
17
|
Sun Q, Sun F, Zheng D, Kong B, Liu Q. Complex starter culture combined with vacuum packaging reduces biogenic amine formation and delays the quality deterioration of dry sausage during storage. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Estrada O, Ariño A, Juan T. Salt Distribution in Raw Sheep Milk Cheese during Ripening and the Effect on Proteolysis and Lipolysis. Foods 2019; 8:foods8030100. [PMID: 30884887 PMCID: PMC6462923 DOI: 10.3390/foods8030100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 11/23/2022] Open
Abstract
The salt distribution process in artisanal sheep cheese with an innovative shape of eight lobes was investigated. The cheese was subjected to two brining conditions: 24 h with brine at 16°Baumé and 12 h at 22°Baumé. The chemical composition (pH, water activity, dry matter, fat, and protein content), proteolysis (nitrogen fractions and free amino acids), and lipolysis (free fatty acids) were evaluated in two sampling zones (internal and external) at 1, 15, 30, 60, 90, 120, 180, and 240 days of ripening. The whole cheese reached a homogeneous salt distribution at 180 days of ripening. Brining conditions did not have an influence on the rate of salt penetration, but on the final sodium chloride (NaCl) content. Cheese with higher salt content (3.0%) showed increased proteolysis and lipolysis as compared to cheese with lower salt content (2.2%). Proteolysis index and total free fatty acids did not differ significantly (p > 0.05) between internal and external zones of cheese. It is suggested that producers start marketing this artisanal cheese at 6 months of ripening, when it has uniform composition and salt distribution.
Collapse
Affiliation(s)
- Olaia Estrada
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, Spain.
| | - Agustín Ariño
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Facultad de Veterinaria, 50013 Zaragoza, Spain.
| | - Teresa Juan
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, Spain.
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Facultad de Veterinaria, 50013 Zaragoza, Spain.
| |
Collapse
|
19
|
Biogenic Amines in Traditional Fiore Sardo PDO Sheep Cheese: Assessment, Validation and Application of an RP-HPLC-DAD-UV Method. SEPARATIONS 2019. [DOI: 10.3390/separations6010011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This contribution aimed to measure for the first time the amount of biogenic amines (BAs) in one of the most ancient and traditional sheep cheese produced in Sardinia, Italy: the Protected Designation of Origin (PDO) Fiore Sardo. To achieve this, an original RP-HPLC-DAD-UV method has been developed that was completely validated in terms of LoD, LoQ, linearity, precision and trueness, and tested on 36 real Fiore Sardo PDO cheese samples produced by four different cheesemakers and marketed by four stores. The average total concentration of the eight BAs (i.e., tyramine, tryptamine, histidine, putrescine, cadaverine, 2-phenylethylamine, spermine and spermidine) measured in Fiore Sardo cheese was 700 mg/kg, with a range between 170 mg/kg and 1,100 mg/kg. A great variability in the total amount of BAs has been evidenced among the Fiore Sardo marketed in the four stores as well as for the cheeses purchased in different times in the same store. Tyramine (350 mg/kg), putrescine (150 mg/kg), histamine (80 mg/kg) and cadaverine (30 mg/kg) are the most abundant BAs found in this matrix. Among the many factors concurring, the dominant microflora of Fiore Sardo PDO is likely the principal cause of the qualitative and quantitative distribution of BAs in this matrix. Finally, the total amount of BAs found in Fiore Sardo PDO is not able to cause any health alert situation for consumers.
Collapse
|
20
|
Gillman PK. A reassessment of the safety profile of monoamine oxidase inhibitors: elucidating tired old tyramine myths. J Neural Transm (Vienna) 2018; 125:1707-1717. [PMID: 30255284 DOI: 10.1007/s00702-018-1932-y] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/17/2018] [Indexed: 01/24/2023]
Abstract
This review appraises over 150 recent original papers reporting data that demonstrate the greatly reduced tyramine content of modern-day 'foods', about which the medical literature has a paucity of information. It discusses the cardiovascular pharmacology of tyramine and the characteristics, extent, risks, and treatment of the blood pressure increases that sometimes result from tyramine ingestion (the pressor response). In past decades, cheese was the only food associated with documented fatalities resulting from hypertension. Today, few foods contain problematically high tyramine levels, which is a result of changes in international food production techniques (especially the use of starter cultures), and hygiene regulations. Nowadays, even 'matured' cheeses are usually safe in healthy-sized portions. The mechanism by which tyramine may be produced in foods (by certain micro-organisms) is explained and hundreds of recent estimations of cheeses are reviewed. Numerous other previously inadequately documented foods are reviewed, including fish and soy sauces, salami-type sausages, dried meats, beers, wines, and various condiments. Evidence that the risk of harm from the pressor response has previously been overstated is reviewed, and the iatrogenic harms from hasty and aggressive treatment of hypertensive urgency are re-evaluated. Evidence now suggests that MAOIs are of comparable safety to many newer drugs and are straightforward to use. Previously held concerns about MAOIs are misplaced and some are of over-estimated consequence. The variability of pressor sensitivity to tyramine between individuals means that the knowledge and judgement of doctors, and some care, are still required.
Collapse
|
21
|
del Valle LJ, Ginovart M, Gordún E, Carbó R. Histidine decarboxylase-positive lactic acid bacteria strains and the formation of histamine in ripened cheeses. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luis J. del Valle
- Departament d'Enginyeria Química, Centre de Biotecnologia Molecular (CEBIM); EEBE, Universitat Politècnica de Catalunya; Barcelona Spain
| | - Marta Ginovart
- Department of Mathematics; Universitat Politècnica de Catalunya; Barcelona Spain
| | - Elena Gordún
- Department of Agri-Food Engineering and Biotechnology; Universitat Politècnica de Catalunya; Barcelona Spain
| | - Rosa Carbó
- Department of Agri-Food Engineering and Biotechnology; Universitat Politècnica de Catalunya; Barcelona Spain
| |
Collapse
|
22
|
Renes E, Ladero V, Tornadijo ME, Fresno JM. Production of sheep milk cheese with high γ-aminobutyric acid and ornithine concentration and with reduced biogenic amines level using autochthonous lactic acid bacteria strains. Food Microbiol 2018; 78:1-10. [PMID: 30497589 DOI: 10.1016/j.fm.2018.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/22/2018] [Accepted: 09/01/2018] [Indexed: 01/15/2023]
Abstract
Consumer demand for health-promoting foods is generating the need to develop biofunctional dairy products. Lactic acid bacteria are employed in cheese-making and some of them are able to produce beneficial compounds on human health such as γ-aminobutyric acid (GABA) and ornithine but also to synthetize biogenic amines. The aim was to investigate the effect of four selected autochthonous co-cultures on the free amino acid profile, with special emphasis on GABA and ornithine, and on the biogenic amine content of pasteurized sheep milk cheese during ripening. High average concentrations of GABA (1296.75 mg/kg cheese) and ornithine (2355.76 mg/kg cheese) were found in all the cheese batches at 240 days of ripening. Batch 2, manufactured with the co-culture containing autochthonous Lactococcus lactis strains as starter and Lactobacillus plantarum TAUL1588 as adjunct, showed 2.37 fold reduced biogenic amines concentration with respect to the batch 1 made with the starter during the ripening time. The microstructure and microbiological counts of cheeses were affected (P ≤ 0.001) by the ripening time, without appreciating differences (P ≥ 0.05) in the physico-chemical composition between batches. This study could be a good approach to the development of functional sheep milk cheese.
Collapse
Affiliation(s)
- E Renes
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of León, León, 24071, Spain
| | - V Ladero
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, 33300, Spain
| | - M E Tornadijo
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of León, León, 24071, Spain.
| | - J M Fresno
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of León, León, 24071, Spain
| |
Collapse
|
23
|
Complete Genome Sequence of Lactobacillus paracasei EG9, a Strain Accelerating Free Amino Acid Production during Cheese Ripening. GENOME ANNOUNCEMENTS 2018; 6:6/27/e00627-18. [PMID: 29976610 PMCID: PMC6033980 DOI: 10.1128/genomea.00627-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lactobacillus paracasei EG9 is a strain isolated from well-ripened cheese and accelerates free amino acid production during cheese ripening. Its complete genome sequence was determined using the PacBio RS II platform, revealing a single circular chromosome of 2,927,257 bp, a G+C content of 46.59%, and three plasmids. Lactobacillus paracasei EG9 is a strain isolated from well-ripened cheese and accelerates free amino acid production during cheese ripening. Its complete genome sequence was determined using the PacBio RS II platform, revealing a single circular chromosome of 2,927,257 bp, a G+C content of 46.59%, and three plasmids.
Collapse
|
24
|
Niro S, Succi M, Tremonte P, Sorrentino E, Coppola R, Panfili G, Fratianni A. Evolution of free amino acids during ripening of Caciocavallo cheeses made with different milks. J Dairy Sci 2017; 100:9521-9531. [DOI: 10.3168/jds.2017-13308] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/08/2017] [Indexed: 11/19/2022]
|
25
|
Gardini F, Özogul Y, Suzzi G, Tabanelli G, Özogul F. Technological Factors Affecting Biogenic Amine Content in Foods: A Review. Front Microbiol 2016; 7:1218. [PMID: 27570519 PMCID: PMC4982241 DOI: 10.3389/fmicb.2016.01218] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/21/2016] [Indexed: 12/17/2022] Open
Abstract
Biogenic amines (BAs) are molecules, which can be present in foods and, due to their toxicity, can cause adverse effects on the consumers. BAs are generally produced by microbial decarboxylation of amino acids in food products. The most significant BAs occurring in foods are histamine, tyramine, putrescine, cadaverine, tryptamine, 2-phenylethylamine, spermine, spermidine, and agmatine. The importance of preventing the excessive accumulation of BAs in foods is related to their impact on human health and food quality. Quality criteria in connection with the presence of BAs in food and food products are necessary from a toxicological point of view. This is particularly important in fermented foods in which the massive microbial proliferation required for obtaining specific products is often relater with BAs accumulation. In this review, up-to-date information and recent discoveries about technological factors affecting BA content in foods are reviewed. Specifically, BA forming-microorganism and decarboxylation activity, genetic and metabolic organization of decarboxylases, risk associated to BAs (histamine, tyramine toxicity, and other BAs), environmental factors influencing BA formation (temperature, salt concentration, and pH). In addition, the technological factors for controlling BA production (use of starter culture, technological additives, effects of packaging, other non-thermal treatments, metabolizing BA by microorganisms, effects of pressure treatments on BA formation and antimicrobial substances) are addressed.
Collapse
Affiliation(s)
- Fausto Gardini
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare, Università degli Studi di BolognaCesena, Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università degli Studi di BolognaCesena, Italy
| | - Yesim Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Çukurova UniversityAdana, Turkey
| | - Giovanna Suzzi
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of TeramoMosciano Sant’Angelo, Italy
| | - Giulia Tabanelli
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare, Università degli Studi di BolognaCesena, Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università degli Studi di BolognaCesena, Italy
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Çukurova UniversityAdana, Turkey
| |
Collapse
|
26
|
Poveda J, Molina G, Gómez-Alonso S. Variability of biogenic amine and free amino acid concentrations in regionally produced goat milk cheeses. J Food Compost Anal 2016. [DOI: 10.1016/j.jfca.2016.06.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Ferrari IDS, de Souza JV, Ramos CL, da Costa MM, Schwan RF, Dias FS. Selection of autochthonous lactic acid bacteria from goat dairies and their addition to evaluate the inhibition of Salmonella typhi in artisanal cheese. Food Microbiol 2016; 60:29-38. [PMID: 27554143 DOI: 10.1016/j.fm.2016.06.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/03/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
This study aimed to select autochthonous lactic acid bacteria (LAB) with probiotic and functional properties from goat dairies and test their addition to artisanal cheese for the inhibition of Salmonella typhi. In vitro tests, including survival in the gastrointestinal tract (GIT), auto- and co-aggregation, the hemolytic test, DNase activity, antimicrobial susceptibility, antibacterial activity, tolerance to NaCl and exopolysaccharide (EPS), gas and diacetyl production were conducted for sixty isolates. Based on these tests, four LAB isolates (UNIVASF CAP 16, 45, 84 and 279) were selected and identified. Additional tests, such as production of lactic and citric acids by UNIVASF CAP isolates were performed in addition to assays of bile salt hydrolase (BSH), β-galactosidase and decarboxylase activity. The four selected LAB produced high lactic acid (>17 g/L) and low citric acid (0.2 g/L) concentrations. All selected strains showed BSH and β-galactosidase activity and none showed decarboxylase activity. Three goat cheeses (1, 2 and control) were produced and evaluated for the inhibitory action of selected LAB against Salmonella typhi. The cheese inoculated with LAB (cheese 2) decreased 0.38 log10 CFU/g of S. Typhy population while in the cheese without LAB inoculation (cheese 1) the pathogen population increased by 0.29 log units. Further, the pH value increased linearly over time, by 0.004 units per day in cheese 1. In the cheese 2, the pH value decreased linearly over time, by 0.066 units per day. The cocktail containing selected Lactobacillus strains with potential probiotic and technological properties showed antibacterial activity against S. typhi in vitro and in artisanal goat cheese. Thus, goat milk is important source of potential probiotic LAB which may be used to inhibit the growth of Salmonella population in cheese goat, contributing to safety and functional value of the product.
Collapse
Affiliation(s)
- Iris da Silva Ferrari
- Federal University of San Francisco Valley, Rod. BR 407, Km 12 - Lote 543 - Projeto de Irrigação Senador Nilo Coelho, s/nº - C1, 56.300-990, Petrolina, Pernambuco, Brazil
| | - Jane Viana de Souza
- Federal University of San Francisco Valley, Rod. BR 407, Km 12 - Lote 543 - Projeto de Irrigação Senador Nilo Coelho, s/nº - C1, 56.300-990, Petrolina, Pernambuco, Brazil
| | - Cintia Lacerda Ramos
- Federal University of Lavras, Biology Department, 37.200-000, Lavras, Minas Gerais, Brazil
| | - Mateus Matiuzzi da Costa
- Federal University of San Francisco Valley, Rod. BR 407, Km 12 - Lote 543 - Projeto de Irrigação Senador Nilo Coelho, s/nº - C1, 56.300-990, Petrolina, Pernambuco, Brazil
| | - Rosane Freitas Schwan
- Federal University of Lavras, Biology Department, 37.200-000, Lavras, Minas Gerais, Brazil
| | - Francesca Silva Dias
- Federal University of San Francisco Valley, Rod. BR 407, Km 12 - Lote 543 - Projeto de Irrigação Senador Nilo Coelho, s/nº - C1, 56.300-990, Petrolina, Pernambuco, Brazil.
| |
Collapse
|