1
|
Ning M, Guo P, Qi J, Cui Y, Wang K, Du G, Wang Z, Yuan Y, Yue T. Detoxification of Mycotoxin Patulin by the Yeast Kluyveromyces marxianus YG-4 in Apple Juice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12798-12809. [PMID: 38772384 DOI: 10.1021/acs.jafc.4c02963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Patulin (PAT) is a mycotoxin produced by Penicillium species, which often contaminates fruit and fruit-derived products, posing a threat to human health and food safety. This work aims to investigate the detoxification of PAT by Kluyveromyces marxianus YG-4 (K. marxianus YG-4) and its application in apple juice. The results revealed that the detoxification effect of K. marxianus YG-4 on PAT includes adsorption and degradation. The adsorption binding sites were polysaccharides, proteins, and some lipids on the cell wall of K. marxianus YG-4, and the adsorption groups were hydroxyl groups, amino acid side chains, carboxyl groups, and ester groups, which were combined through strong forces (ion interactions, electrostatic interactions, and hydrogen bonding) and not easily eluted. The degradation active substance was an intracellular enzyme, and the degradation product was desoxypatulinic acid (DPA) without cytotoxicity. K. marxianus YG-4 can also effectively adsorb and degrade PAT in apple juice. The contents of organic acids and polyphenols significantly increased after detoxification, significantly improving the quality of apple juice. The detoxification ability of K. marxianus YG-4 toward PAT would be a novel approach for the elimination of PAT contamination.
Collapse
Affiliation(s)
- Mengge Ning
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Peng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jianrui Qi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yuanyuan Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Kai Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Gengan Du
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
2
|
Wu Y, Gao Y, Zheng X, Yu T, Yan F. Enhancement of biocontrol efficacy of Kluyveromyces marxianus induced by N-acetylglucosamine against Penicillium expansum. Food Chem 2023; 404:134658. [DOI: 10.1016/j.foodchem.2022.134658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/19/2022] [Accepted: 10/15/2022] [Indexed: 11/22/2022]
|
3
|
Selection of Yeast and Lactic Acid Bacteria Strains, Isolated from Spontaneous Raw Milk Fermentation, for the Production of a Potential Probiotic Fermented Milk. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Probiotic milk is a class of fermented milk that possesses health-promoting effects, not only due to the lactic acid bacteria (LAB) presence but potentially also to yeast activity. Hence, the aim of this work was to isolate and select yeasts from spontaneous milk fermentations to be used as inoculum, together with LAB, for manufacturing a potentially probiotic acidic low-alcohol fermented milk. Six yeast species were detected from the spontaneous milk fermentation. A screening of 13 yeast strains and 14 previously isolated LAB strains, based on the resistance to bile salts and to acidic conditions, was carried out. The best performing strains were successively tested for in vitro gastrointestinal tolerance. A strain of Kluyveromyces marxianus and a strain of Lactococcus lactis were selected for the manufacturing of two different fermented milk. The values of the main technological and microbiological parameters (pH, organic acids, ethanol, and microbial concentrations) of the experimental milk were in the range of those reported for this category of products. The evaluation of microorganism survival in fermented milk samples subjected to simulated gastrointestinal conditions highlighted a high resistance of both strains. In conclusion, the selected microbial starter culture enabled the setting up of potential probiotic fermented milk.
Collapse
|
4
|
Fenton DA, Kiniry SJ, Yordanova MM, Baranov PV, Morrissey JP. Development of a ribosome profiling protocol to study translation in Kluyveromyces marxianus. FEMS Yeast Res 2022; 22:foac024. [PMID: 35521744 PMCID: PMC9246280 DOI: 10.1093/femsyr/foac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/17/2022] [Accepted: 05/04/2022] [Indexed: 11/27/2022] Open
Abstract
Kluyveromyces marxianus is an interesting and important yeast because of particular traits such as thermotolerance and rapid growth, and for applications in food and industrial biotechnology. For both understanding its biology and developing bioprocesses, it is important to understand how K. marxianus responds and adapts to changing environments. For this, a full suite of omics tools to measure and compare global patterns of gene expression and protein synthesis is needed. We report here the development of a ribosome profiling method for K. marxianus, which allows codon resolution of translation on a genome-wide scale by deep sequencing of ribosome locations on mRNAs. To aid in the analysis and sharing of ribosome profiling data, we added the K. marxianus genome as well as transcriptome and ribosome profiling data to the publicly accessible GWIPS-viz and Trips-Viz browsers. Users are able to upload custom ribosome profiling and RNA-Seq data to both browsers, therefore allowing easy analysis and sharing of data. We also provide a set of step-by-step protocols for the experimental and bioinformatic methods that we developed.
Collapse
Affiliation(s)
- Darren A Fenton
- School of Biochemistry and Cell Biology, University College Cork, Cork, T12 XF62, Ireland
- School of Microbiology, Environmental Research Institute, APC Microbiome Institute, SUSFERM Fermentation Science Centre, University College Cork, Cork T12 K8AF, Ireland
| | - Stephen J Kiniry
- School of Biochemistry and Cell Biology, University College Cork, Cork, T12 XF62, Ireland
| | - Martina M Yordanova
- School of Biochemistry and Cell Biology, University College Cork, Cork, T12 XF62, Ireland
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, T12 XF62, Ireland
| | - John P Morrissey
- School of Microbiology, Environmental Research Institute, APC Microbiome Institute, SUSFERM Fermentation Science Centre, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
5
|
Characterization of Yeasts Isolated from Parmigiano Reggiano Cheese Natural Whey Starter: From Spoilage Agents to Potential Cell Factories for Whey Valorization. Microorganisms 2021; 9:microorganisms9112288. [PMID: 34835414 PMCID: PMC8623691 DOI: 10.3390/microorganisms9112288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Whey is the main byproduct of the dairy industry and contains sugars (lactose) and proteins (especially serum proteins and, at lesser extent, residual caseins), which can be valorized by the fermentative action of yeasts. In the present study, we characterized the spoilage yeast population inhabiting natural whey starter (NWS), the undefined starter culture of thermophilic lactic acid bacteria used in Parmigiano Reggiano (PR) cheesemaking, and evaluated thermotolerance, mating type, and the aptitude to produce ethanol and bioactive peptides from whey lactose and proteins, respectively, in a selected pool of strains. PCR-RFLP assay of ribosomal ITS regions and phylogenetic analysis of 26S rDNA D1/D2 domains showed that PR NWS yeast population consists of the well-documented Kluyveromyces marxianus, as well as of other species (Saccharomyces cerevisiae, Wickerhamiella pararugosa, and Torulaspora delbrueckii), with multiple biotypes scored within each species as demonstrated by (GTG)5-based MSP-PCR. Haploid and diploid K. marxianus strains were identified through MAT genotyping, while thermotolerance assay allowed the selection of strains suitable to grow up to 48 °C. In whey fermentation trials, one thermotolerant strain was suitable to release ethanol with a fermentation efficiency of 86.5%, while another candidate was able to produce the highest amounts of both ethanol and bioactive peptides with potentially anti-hypertensive function. The present work demonstrated that PR NWS is a reservoir of ethanol and bioactive peptides producer yeasts, which can be exploited to valorize whey, in agreement with the principles of circularity and sustainability.
Collapse
|
6
|
Mycobiota Composition of Robiola di Roccaverano Cheese along the Production Chain. Foods 2021; 10:foods10081859. [PMID: 34441636 PMCID: PMC8392574 DOI: 10.3390/foods10081859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 01/04/2023] Open
Abstract
Robiola di Roccaverano is a Protected Designation of Origin (PDO) cheese from the Piedmont region of Italy. In this study, the mycobiota occurring during Robiola di Roccaverano production was elucidated. Samples of milk, Natural Milk Cultures (NMC), curd, 5- and 15-days ripened cheese were collected from one dairy plant and the mycobiota was analyzed by the metataxonomic approach. Milk samples showed a high diversity and Cladosporium, Kluyveromyces marxianus, Geotrichum candidum and Debaryomyces hansenii were found with higher relative abundance. This mycobiota remains quite stable in NMC and curd matrices although the relative abundance of K. marxianus and G. candidum yeasts increased significantly and shaped the fungal composition of 5- and 15-day ripened cheese.
Collapse
|
7
|
Levante A, Bertani G, Bottari B, Bernini V, Lazzi C, Gatti M, Neviani E. How new molecular approaches have contributed to shedding light on microbial dynamics in Parmigiano Reggiano cheese. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Biological Control of Phytopathogenic Fungi by Kluyveromyces marxianus and Torulaspora delbrueckii Isolated from Iraqi Date Vinegar. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeasts are distributed in all environments and have been reported as potential biocontrol agents against various phytopathogenic fungi. To investigate their enzymatic and biological activities, 32 yeasts were isolated from 15 date vinegar samples. Evaluation of the antagonistic activities of isolated yeasts against the plant pathogens Fusarium oxysporium, Sclerotinia sclerotiorum, and Macrophomina phaseolina indicated that there are two yeasts had the highest inhibitory effect against plant pathogens, these yeasts identified as Kluyveromyces marxianus and Torulaspora delbrueckii using traditional and molecular methods. These yeast isolates were tested for fungal cell wall degrading enzymes (in vitro), and results indicated that the yeasts had strong protease and amylase enzyme activity and moderate chitinase and cellulase enzyme activity. The antagonistic activities of each yeast were evaluated using a dual culture technique. The results showed that K. marxianus inhibited the mycelial growth of F. oxysporium, S. sclerotiorum, and M. phaseolina by 70.5, 57.5, and 75.5%, respectively, whereas T. delbrueckii inhibited mycelial growth of F. oxysporum, S. sclerotiorum, and M. phaseolina by 55.3%, 66.2%, and 31.11%, respectively. The biofilm production assay indicated that the tested yeast could form biofilms as a mechanism of antagonistic activity against phytopathogenic fungi.
Collapse
|
9
|
Agarbati A, Marini E, Galli E, Canonico L, Ciani M, Comitini F. Characterization of wild yeasts isolated from artisan dairies in the Marche region, Italy, for selection of promising functional starters. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
Saidi V, Sheikh-Zeinoddin M, Kobarfard F, Soleimanian-Zad S, Sedaghat Doost A. Profiling of bioactive metabolites during the ripening of a semi-hard non-starter culture cheese to detect functional dietary neurotransmitters. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Karim A, Gerliani N, Aïder M. Kluyveromyces marxianus: An emerging yeast cell factory for applications in food and biotechnology. Int J Food Microbiol 2020; 333:108818. [PMID: 32805574 DOI: 10.1016/j.ijfoodmicro.2020.108818] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/18/2022]
Abstract
Several yeasts, which are eukaryotic microorganisms, have long been used in different industries due to their potential applications, both for fermentation and for the production of specific metabolites. Kluyveromyces marxianus is one of the most auspicious nonconventional yeasts, generally isolated from wide-ranging natural habitats such as fermented traditional dairy products, kefir grain, sewage from sugar industries, sisal leaves, and plants. This is a food-grade yeast with various beneficial traits, such as rapid growth rate and thermotolerance that make it appealing for different industrial food and biotechnological applications. K. marxianus is a respiro-fermentative yeast likely to produce energy by either respiration or fermentation pathways. It generates a wide-ranging specific metabolites and could contribute to a variety of different food and biotechnological industries. Although Saccharomyces cerevisiae is the most widely used dominant representative in all aspects, many applications of K. marxianus in biotechnology, food and environment have only started to emerge nowadays; some of the most promising applications are reviewed here. The general physiology of K. marxianus is outlined, and then the different applications are discussed: first, the applications of K. marxianus in biotechnology, and then the recent advances and possible applications in food, feed and environmental industries. Finally, this review provides a discussion of the main challenges and some perspectives for targeted applications of K. marxianus in the modern food technology and applied biotechnology in order to exploit the full potential of this yeast which can be used as a cell factory with great efficiency.
Collapse
Affiliation(s)
- Ahasanul Karim
- Department of Soil Sciences and Agri-food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Natela Gerliani
- Department of Soil Sciences and Agri-food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Mohammed Aïder
- Department of Soil Sciences and Agri-food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada.
| |
Collapse
|
12
|
Perpetuini G, Tittarelli F, Battistelli N, Suzzi G, Tofalo R. γ‐aminobutyric acid production by
Kluyveromyces marxianus
strains. J Appl Microbiol 2020; 129:1609-1619. [DOI: 10.1111/jam.14736] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 05/26/2020] [Accepted: 05/31/2020] [Indexed: 12/24/2022]
Affiliation(s)
- G. Perpetuini
- Faculty of BioScience and Technology for Food, Agriculture and Environment University of Teramo Teramo Italy
| | - F. Tittarelli
- Faculty of BioScience and Technology for Food, Agriculture and Environment University of Teramo Teramo Italy
| | - N. Battistelli
- Faculty of BioScience and Technology for Food, Agriculture and Environment University of Teramo Teramo Italy
| | - G. Suzzi
- Faculty of BioScience and Technology for Food, Agriculture and Environment University of Teramo Teramo Italy
| | - R. Tofalo
- Faculty of BioScience and Technology for Food, Agriculture and Environment University of Teramo Teramo Italy
| |
Collapse
|
13
|
Andrade RP, Oliveira DR, Lopes ACA, de Abreu LR, Duarte WF. Survival of Kluyveromyces lactis and Torulaspora delbrueckii to simulated gastrointestinal conditions and their use as single and mixed inoculum for cheese production. Food Res Int 2019; 125:108620. [PMID: 31554038 DOI: 10.1016/j.foodres.2019.108620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022]
Abstract
The demand for new probiotic products has shown recent increases alongside a growing interest in studying starter cultures of cheeses. This study thus aims to evaluate the ability to survive under simulated gastrointestinal conditions and impact of Torulaspora delbrueckii B14 and Kluyveromyces lactis B10 as single and mixed inocula for cheese production. These two yeast strains were subjected to simulated gastrointestinal tracts and tested for self-aggregation, hydrophobicity, pathogen inhibition, antibiotic resistance, and β-galactosidase production. The yeast strains were also assessed for their ability to survive in different NaCl concentrations (2.5%, 5%, and 10% w/v), multiple temperatures (4 °C and 40 °C), and used as single and mixed starter cultures for cheese production. Yeasts population levels were monitored by YPD plating and MALDI-TOF and metabolites were analyzed by HPLC and GC-MS over the course of the 21 days cheese maturation process. T. delbrueckii B14 and K. lactis B10 both showed >80% viability after the passage through the simulated gastrointestinal tract, had self-aggregation rates >90%, and displayed β-galactosidase activities of 0.35 U/g and 0.53 U/g, respectively. Both yeasts survived at 2.5%, 5%, and 10% NaCl for 21 days and showed growth at 4 °C. In cheese, the single inoculum of K. lactis B10 and mixed inoculum showed the highest levels of lactose consumption. HS-SPME GC-MS analysis of cheese samples allowed the identification of 38 volatile compounds. The highest concentrations of most of these compounds were observed after 21 days of maturation for the cheese produced with mixed inoculum. The most abundant acids detected were hexanoic and decanoic acid; the most abundant alcohols were 2,3-butanediol, 2-phenylethanol and isoamyl alcohol, and the most prevalent ester compounds were isoamyl acetate and phenethyl acetate. Our results therefore show that T. delbrueckii B14 and K. lactis B10 are interesting yeasts for further studies in the context of probiotics and positively impact the composition of desirable volatile compounds in cheeses, particularly when used as mixed inoculum.
Collapse
|
14
|
Perpetuini G, Tittarelli F, Suzzi G, Tofalo R. Cell Wall Surface Properties of Kluyveromyces marxianus Strains From Dairy-Products. Front Microbiol 2019; 10:79. [PMID: 30766524 PMCID: PMC6366010 DOI: 10.3389/fmicb.2019.00079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/15/2019] [Indexed: 01/30/2023] Open
Abstract
Thirty-three Kluyveromyces marxianus strains were tested for the ability to form biofilm and mat structures in YPD and whey and for cell surface hydrophobicity. To identify genes potentially involved in adhesion properties, a RT-qPCR analysis was performed. Eight strains were able to adhere on polystyrene plates in both media and formed a mature mat structure. These strains showed a different level of hydrophobicity ranging from 55 to 66% in YPD and from 69 to 81% in whey. Four K. marxianus orthologs genes (FLO11, STE12, TPK3, and WSC4), known from studies in other yeast to be involved in biofilm formation, have been studied. FLO11 and STE12 showed the highest fold changes in all conditions tested and especially in whey: 15.05 and 11.21, respectively. TPK3 was upregulated only in a strain, and WSC4 in 3 strains. In YPD, fold changes were lower than in whey with STE12 and FLO11 genes showing the highest fold changes. In mat structures FLO11 and STE12 fold changes ranged from 3.6-1.3 to 2-1.17, respectively. Further studies are necessary to better understand the role of these genes in K. marxianus adhesion ability.
Collapse
Affiliation(s)
| | | | | | - Rosanna Tofalo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
15
|
Varela JA, Puricelli M, Montini N, Morrissey JP. Expansion and Diversification of MFS Transporters in Kluyveromyces marxianus. Front Microbiol 2019; 9:3330. [PMID: 30687296 PMCID: PMC6335341 DOI: 10.3389/fmicb.2018.03330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/21/2018] [Indexed: 11/24/2022] Open
Abstract
In yeasts, proteins of the Major Superfamily Transporter selectively bind and allow the uptake of sugars to permit growth on varied substrates. The genome of brewer’s yeast, Saccharomyces cerevisiae, encodes multiple hexose transporters (Hxt) to transport glucose and other MFS proteins for maltose, galactose, and other monomers. For sugar uptake, the dairy yeast, Kluyveromyces lactis, uses Rag1p for glucose, Hgt1 for glucose and galactose, and Lac12 for lactose. In the related industrial species Kluyveromyces marxianus, there are four genes encoding Lac12-like proteins but only one of them, Lac12, can transport lactose. In this study, which initiated with efforts to investigate possible functions encoded by the additional LAC12 genes in K. marxianus, a genome-wide survey of putative MFS sugar transporters was performed. Unexpectedly, it was found that the KHT and the HGT genes are present as tandem arrays of five to six copies, with the precise number varying between isolates. Heterologous expression of individual genes in S. cerevisiae and mutagenesis of single and multiple genes in K. marxianus was performed to establish possible substrates for these transporters. The focus was on the sugar galactose since it was already reported in K. lactis that this hexose was a substrate for both Lac12 and Hgt1. It emerged that three of the four copies of Lac12, four Hgt-like proteins and one Kht-like protein have some capacity to transport galactose when expressed in S. cerevisiae and inactivation of all eight genes was required to completely abolish galactose uptake in K. marxianus. Analysis of the amino acid sequence of all known yeast galactose transporters failed to identify common residues that explain the selectivity for galactose. Instead, the capacity to transport galactose has arisen three different times in K. marxianus via polymorphisms in proteins that are probably ancestral glucose transporters. Although, this is analogous to S. cerevisiae, in which Gal2 is related to glucose transporters, there are not conserved amino acid changes, either with Gal2, or among the K. marxianus galactose transporters. The data highlight how gene duplication and functional diversification has provided K. marxianus with versatile capacity to utilise sugars for growth.
Collapse
Affiliation(s)
- Javier A Varela
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Martina Puricelli
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Noemi Montini
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, Ireland
| | - John P Morrissey
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
16
|
Hernández A, Pérez-Nevado F, Ruiz-Moyano S, Serradilla MJ, Villalobos MC, Martín A, Córdoba MG. Spoilage yeasts: What are the sources of contamination of foods and beverages? Int J Food Microbiol 2018; 286:98-110. [PMID: 30056262 DOI: 10.1016/j.ijfoodmicro.2018.07.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
Foods and beverages are nutrient-rich ecosystems in which most microorganisms are able to grow. Moreover, several factors, such as physicochemical characteristics, storage temperature, culinary practices, and application of technologies for storage, also define the microbial population of foods and beverages. The yeast population has been well-characterised in fresh and processed fruit and vegetables, dairy products, dry-cured meat products, and beverages, among others. Some species are agents of alteration in different foods and beverages. Since the most comprehensive studies of spoilage yeasts have been performed in the winemaking process, hence, these studies form the thread of the discussion in this review. The natural yeast populations in raw ingredients and environmental contamination in the manufacturing facilities are the main modes by which food contamination occurs. After contamination, yeasts play a significant role in food and beverage spoilage, particularly in the alteration of fermented foods. Several mechanisms contribute to spoilage by yeasts, such as the production of lytic enzymes (lipases, proteases, and cellulases) and gas, utilisation of organic acids, discolouration, and off-flavours. This review addresses the role of yeasts in foods and beverages degradation by considering the modes of contamination and colonisation by yeasts, the yeast population diversity, mechanisms involved, and the analytical techniques for their identification, primarily molecular methods.
Collapse
Affiliation(s)
- A Hernández
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain.
| | - F Pérez-Nevado
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain
| | - S Ruiz-Moyano
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain
| | - M J Serradilla
- Área de Vegetales, Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), A5 km 372, 06187 Guadajira, Spain
| | - M C Villalobos
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain
| | - A Martín
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain
| | - M G Córdoba
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Instituto Universitario de Recursos Agrarios (INURA), Universidad de Extremadura, Ctra. de Cáceres s/n, 06007 Badajoz, Spain
| |
Collapse
|
17
|
Schirone M, Tofalo R, Perpetuini G, Manetta AC, Di Gianvito P, Tittarelli F, Battistelli N, Corsetti A, Suzzi G, Martino G. Influence of Iodine Feeding on Microbiological and Physico-Chemical Characteristics and Biogenic Amines Content in a Raw Ewes' Milk Cheese. Foods 2018; 7:foods7070108. [PMID: 29986497 PMCID: PMC6068549 DOI: 10.3390/foods7070108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/23/2018] [Accepted: 07/06/2018] [Indexed: 12/03/2022] Open
Abstract
Iodine is an essential trace element involved in the regulation of thyroid metabolism and antioxidant status in humans and animals. The aim of this study was to evaluate the effect of ewes’ dietary iodine supplementation on biogenic amines content as well as microbiological and physico-chemical characteristics in a raw milk cheese at different ripening times (milk, curd, and 2, 7, 15, 30, 60, and 90 days). Two cheese-making trials were carried out using milk from ewes fed with unifeed (Cheese A) or with the same concentrate enriched with iodine (Cheese B). The results indicated that the counts of principal microbial groups and physico-chemical characteristics were quite similar in both cheeses at day 90. Cheese B was characterized by a higher content of biogenic amines and propionic acid. Propionic bacteria were found in both cheeses mainly in Trial B in agreement with the higher content of propionic acid detected.
Collapse
Affiliation(s)
- Maria Schirone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy.
| | - Rosanna Tofalo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy.
| | - Giorgia Perpetuini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy.
| | - Anna Chiara Manetta
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy.
| | - Paola Di Gianvito
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy.
| | - Fabrizia Tittarelli
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy.
| | - Noemi Battistelli
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy.
| | - Aldo Corsetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy.
| | - Giovanna Suzzi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy.
| | - Giuseppe Martino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy.
| |
Collapse
|
18
|
Ortiz-Merino RA, Varela JA, Coughlan AY, Hoshida H, da Silveira WB, Wilde C, Kuijpers NGA, Geertman JM, Wolfe KH, Morrissey JP. Ploidy Variation in Kluyveromyces marxianus Separates Dairy and Non-dairy Isolates. Front Genet 2018; 9:94. [PMID: 29619042 PMCID: PMC5871668 DOI: 10.3389/fgene.2018.00094] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/05/2018] [Indexed: 11/20/2022] Open
Abstract
Kluyveromyces marxianus is traditionally associated with fermented dairy products, but can also be isolated from diverse non-dairy environments. Because of thermotolerance, rapid growth and other traits, many different strains are being developed for food and industrial applications but there is, as yet, little understanding of the genetic diversity or population genetics of this species. K. marxianus shows a high level of phenotypic variation but the only phenotype that has been clearly linked to a genetic polymorphism is lactose utilisation, which is controlled by variation in the LAC12 gene. The genomes of several strains have been sequenced in recent years and, in this study, we sequenced a further nine strains from different origins. Analysis of the Single Nucleotide Polymorphisms (SNPs) in 14 strains was carried out to examine genome structure and genetic diversity. SNP diversity in K. marxianus is relatively high, with up to 3% DNA sequence divergence between alleles. It was found that the isolates include haploid, diploid, and triploid strains, as shown by both SNP analysis and flow cytometry. Diploids and triploids contain long genomic tracts showing loss of heterozygosity (LOH). All six isolates from dairy environments were diploid or triploid, whereas 6 out 7 isolates from non-dairy environment were haploid. This also correlated with the presence of functional LAC12 alleles only in dairy haplotypes. The diploids were hybrids between a non-dairy and a dairy haplotype, whereas triploids included three copies of a dairy haplotype.
Collapse
Affiliation(s)
- Raúl A Ortiz-Merino
- School of Medicine, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Javier A Varela
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Aisling Y Coughlan
- School of Medicine, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Hisashi Hoshida
- Department of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | | | | | | | | | - Kenneth H Wolfe
- School of Medicine, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - John P Morrissey
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
19
|
Tittarelli F, Varela JA, Gethins L, Stanton C, Ross RP, Suzzi G, Grazia L, Tofalo R, Morrissey JP. Development and implementation of multilocus sequence typing to study the diversity of the yeast Kluyveromyces marxianus in Italian cheeses. Microb Genom 2018; 4. [PMID: 29345222 PMCID: PMC5857380 DOI: 10.1099/mgen.0.000153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The yeast Kluyveromyces marxianus possesses advantageous traits like rapid growth, GRAS (generally regarded as safe) status and thermotolerance that make it very suitable for diverse biotechnological applications. Although physiological studies demonstrate wide phenotypic variation within the species, there is only limited information available on the genetic diversity of K. marxianus. The aim of this work was to develop a multilocus sequence typing (MLST) method for K. marxianus to improve strain classification and selection. Analysis of housekeeping genes in a number of sequenced strains led to the selection of five genes, IPP1, TFC1, GPH1, GSY2 and SGA1, with sufficient polymorphic sites to allow MLST analysis. These loci were sequenced in an additional 76 strains and used to develop the MLST. This revealed wide diversity in the species and separation of the culture collection and wild strains into multiple distinct clades. Two subsets of strains that shared sources of origin were subjected to MLST and split decomposition analysis. The latter revealed evidence of recombination, indicating that this yeast undergoes mating in the wild. A public access web-based portal was established to allow expansion of the database and application of MLST to additional K. marxianus strains. This will aid understanding of the genetic diversity of the yeast and facilitate biotechnological exploitation.
Collapse
Affiliation(s)
- Fabrizia Tittarelli
- 1Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.,2School of Microbiology, Environmental Research Institute, Centre for Synthetic Biology and Biotechnology, University College Cork, Cork T12YN60, Ireland
| | - Javier A Varela
- 2School of Microbiology, Environmental Research Institute, Centre for Synthetic Biology and Biotechnology, University College Cork, Cork T12YN60, Ireland
| | - Loughlin Gethins
- 2School of Microbiology, Environmental Research Institute, Centre for Synthetic Biology and Biotechnology, University College Cork, Cork T12YN60, Ireland
| | - Catherine Stanton
- 3Teagasc Research Centre, Moorepark, Ireland.,4School of Microbiology, APC Microbiome Institute, University College Cork, Cork, Ireland
| | - R P Ross
- 4School of Microbiology, APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Giovanna Suzzi
- 1Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Luigi Grazia
- 5Department of Science and Technology for Food and Agriculture (DISTAL), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Rosanna Tofalo
- 1Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - John P Morrissey
- 2School of Microbiology, Environmental Research Institute, Centre for Synthetic Biology and Biotechnology, University College Cork, Cork T12YN60, Ireland.,4School of Microbiology, APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
20
|
Pino A, Liotta L, Randazzo CL, Todaro A, Mazzaglia A, De Nardo F, Chiofalo V, Caggia C. Polyphasic approach to study physico-chemical, microbiological and sensorial characteristics of artisanal Nicastrese goat's cheese. Food Microbiol 2017; 70:143-154. [PMID: 29173621 DOI: 10.1016/j.fm.2017.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 10/18/2022]
Abstract
Nicastrese goat's cheese is produced in the South of Italy under traditional procedures, from raw goat milk without any starter cultures addition. Samples from milk to ripened cheese provided by 4 different farms were subjected to a polyphasic approach to study their physico-chemical, microbiological and sensorial characteristics. In addition, volatile organic compounds formation in the final products was studied. Overall, gross composition and microbiological data revealed a significant variability among samples, which was confirmed by both the volatile organic compounds generated in the final products and by the sensorial data. Conventional technique allowed us to identify 720 isolates, mainly belonging to Lactococcus lactis, Lactobacillus plantarum, Lactobacillus casei, Lactobacillus brevis, Leuconostoc mesenteroides, and Enterococcus faecalis. Culture-independent methods revealed shifts in the microbial community structure, with an increase in biodiversity of metabolically active bacterial species, from milk to cheese samples. Analysis of volatile organic compounds (VOCs) allowed the identification of 36 compounds; free fatty acids and ketones represented the main detected, followed by alcohols and esters. Moreover, statistical analysis was performed in order to correlate VOCs to bacterial species. Data showed that ester compounds as well as alcohol and aldehydes were positively correlated to NSLAB, indicating that the occurrence of L. casei, L. plantarum and L. brevis species is relevant for the VOCs formation in the final product.
Collapse
Affiliation(s)
- Alessandra Pino
- Department of Agricultural, Food and Environment, University of Catania, Italy
| | - Luigi Liotta
- Department of Veterinary Sciences, University of Messina, Italy
| | - Cinzia L Randazzo
- Department of Agricultural, Food and Environment, University of Catania, Italy.
| | - Aldo Todaro
- Department of Agricultural and Forest Science, University of Palermo, Italy
| | - Agata Mazzaglia
- Department of Agricultural, Food and Environment, University of Catania, Italy
| | - Floro De Nardo
- Italian Rare Breed Association (RARE), Lamezia Terme, Italy
| | | | - Cinzia Caggia
- Department of Agricultural, Food and Environment, University of Catania, Italy
| |
Collapse
|