1
|
Krebs L, Verhoeven J, Verbruggen S, Lesar A, Meddah R, Blouin M, Venema K, Chamberland J, Brisson G. Assessment of protein and phospholipid bioaccessibility in ultrafiltered buttermilk cheese using TIM-1 in vitro gastrointestinal methods. Food Res Int 2024; 190:114606. [PMID: 38945574 DOI: 10.1016/j.foodres.2024.114606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024]
Abstract
To meet the high consumer demand, butter production has increased over the last few years. As a result, the buttermilk (BM) co-produced volumes require new ways of adding value, such as in cheese manufacturing. However, BM use in cheese milk negatively influences the cheesemaking process (e.g., altered coagulation properties) and the product's final quality (e.g., high moisture content). The concentration of BM by ultrafiltration (UF) could potentially facilitate its use in cheese manufacturing through an increased protein content while maintaining the milk salt balance. Simultaneously, little is known about the digestion of UF BM cheese. Therefore, this study aimed to characterize the impact of UF BM on cheese manufacture, its structure, and its behavior during in vitro digestion. A 2-fold UF concentrated BM was used for cheese manufacture (skim milk [SM] - control). Compositional, textural, and microstructural analyses of cheeses were first conducted. In a second step, the cheeses were fed into an in vitro TNO gastrointestinal digestion model (TIM-1) of the stomach and small intestine and protein and phospholipid (PL) bioaccessibility was studied. The results showed that UF BM cheese significantly differed from SM cheese regarding its composition, hardness (p < 0.05) and microstructure. However, in TIM-1, UF BM and SM cheeses showed similar digestion behavior as a percentage of protein and PL intake. Despite relatively more non-digested and non-absorbed PL in the ileum efflux of UF BM cheese, the initially higher PL concentration contributes to an enhanced nutritional value compared to SM cheese. To our knowledge, this study is the first to compare the bioaccessibility of proteins and PL from UF BM and SM cheeses.
Collapse
Affiliation(s)
- Louise Krebs
- Institute of Nutrition and Functional Foods (INAF), Dairy Science and Technology Research Centre (STELA), Department of Food Sciences, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jessica Verhoeven
- Centre for Healthy Eating & Food Innovation (HEFI), Faculty of Science and Engineering, Maastricht University - campus Venlo, 5928 SZ Venlo, the Netherlands
| | - Sanne Verbruggen
- Centre for Healthy Eating & Food Innovation (HEFI), Faculty of Science and Engineering, Maastricht University - campus Venlo, 5928 SZ Venlo, the Netherlands
| | - Aleksander Lesar
- University of Ljubljana, Biotechnical Faculty, 1000 Ljubljana, Slovenia
| | - Rihab Meddah
- Institute of Nutrition and Functional Foods (INAF), Dairy Science and Technology Research Centre (STELA), Department of Food Sciences, Université Laval, Québec, QC G1V 0A6, Canada
| | - Maude Blouin
- Institute of Nutrition and Functional Foods (INAF), Dairy Science and Technology Research Centre (STELA), Department of Food Sciences, Université Laval, Québec, QC G1V 0A6, Canada
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Faculty of Science and Engineering, Maastricht University - campus Venlo, 5928 SZ Venlo, the Netherlands
| | - Julien Chamberland
- Institute of Nutrition and Functional Foods (INAF), Dairy Science and Technology Research Centre (STELA), Department of Food Sciences, Université Laval, Québec, QC G1V 0A6, Canada
| | - Guillaume Brisson
- Institute of Nutrition and Functional Foods (INAF), Dairy Science and Technology Research Centre (STELA), Department of Food Sciences, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
2
|
Zarif B, Shabbir S, Rahman A, Sherazi TA, Shahid R, Noor T, Imran M. Milk phospholipids and buttermilk based composite nanosystems for enhanced stability and bioaccessibility of β-carotene. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Krebs L, Pouliot Y, Doyen A, Venema K, Brisson G. Effect of reverse osmosis and ultra-high-pressure homogenization on the composition and microstructure of sweet buttermilk. J Dairy Sci 2023; 106:1596-1610. [PMID: 36586799 DOI: 10.3168/jds.2022-22483] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/21/2022] [Indexed: 12/31/2022]
Abstract
Buttermilk (BM), the by-product of butter making, is similar to skim milk (SM) composition. However, it is currently undervalued in dairy processing because it is responsible for texture defects (e.g., crumbliness, decreased firmness) in cheese and yogurt. One possible way of improving the incorporation of BM into dairy products is by the use of technological pretreatments such as membrane filtration and homogenization. The study aimed at characterizing the effect of preconcentration by reverse osmosis (RO) and single-pass ultra-high-pressure homogenization (UHPH) on the composition and microstructure of sweet BM to modify its techno-functional properties (e.g., protein gel formation, syneresis, firmness). The BM and RO BM were treated at 0, 15, 150, and 300 MPa. Pressure-treated and control BM and RO BM were ultracentrifuged to fractionate them into the following 3 fractions: a supernatant soluble fraction (top layer), a colloidal fraction consisting of a cloudy layer (middle layer), and a high-density pellet (bottom layer). Compositional changes in the soluble fraction [lipid, phospholipid (PL), protein, and salt], as well as its protein profile by PAGE analysis, were determined. Modifications in particle size distribution upon UHPH were monitored by laser diffraction in the presence and absence of sodium citrate to dissociate the casein (CN) micelles. Microstructural changes in pressure-treated and non-pressure-treated BM and RO BM particles were monitored by confocal laser scanning microscopy. Particle size analysis showed that UHPH treatment significantly decreased the size of the milk fat globule membrane fragments in BM and RO BM. Also, pressure treatment at 300 MPa led to a significant increase in the recovery of total lipids, CN, calcium, and phosphate in the BM soluble fraction (top layer) following ultracentrifugation. However, PL were primarily concentrated in the pellet cloud (middle layer), located above the pellet in BM concentrated by RO. In contrast, PL were evenly distributed between soluble and colloidal phases of BM. This study provides insight into the modifications of sweet BM constituents induced by RO and UHPH from a compositional and structural perspective.
Collapse
Affiliation(s)
- L Krebs
- Institute of Nutrition and Functional Foods (INAF), Dairy Science and Technology Research Centre (STELA), Department of Food Sciences, Université Laval, Quebec, G1V 0A6, Canada
| | - Y Pouliot
- Institute of Nutrition and Functional Foods (INAF), Dairy Science and Technology Research Centre (STELA), Department of Food Sciences, Université Laval, Quebec, G1V 0A6, Canada
| | - A Doyen
- Institute of Nutrition and Functional Foods (INAF), Dairy Science and Technology Research Centre (STELA), Department of Food Sciences, Université Laval, Quebec, G1V 0A6, Canada
| | - K Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Faculty of Science and Engineering, Maastricht University-Venlo, 5928 SZ, the Netherlands
| | - G Brisson
- Institute of Nutrition and Functional Foods (INAF), Dairy Science and Technology Research Centre (STELA), Department of Food Sciences, Université Laval, Quebec, G1V 0A6, Canada.
| |
Collapse
|
5
|
Gauvin MP, Pouliot Y, Britten M. Rennet coagulation properties of milk in the presence of MFGM fragments isolated from raw – and pasteurised-cream buttermilk. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|