1
|
Martini S, Sola L, Cattivelli A, Cristofolini M, Pizzamiglio V, Tagliazucchi D, Solieri L. Cultivable microbial diversity, peptide profiles, and bio-functional properties in Parmigiano Reggiano cheese. Front Microbiol 2024; 15:1342180. [PMID: 38567075 PMCID: PMC10985727 DOI: 10.3389/fmicb.2024.1342180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Lactic acid bacteria (LAB) communities shape the sensorial and functional properties of artisanal hard-cooked and long-ripened cheeses made with raw bovine milk like Parmigiano Reggiano (PR) cheese. While patterns of microbial evolution have been well studied in PR cheese, there is a lack of information about how this microbial diversity affects the metabolic and functional properties of PR cheese. Methods To fill this information gap, we characterized the cultivable fraction of natural whey starter (NWS) and PR cheeses at different ripening times, both at the species and strain level, and investigated the possible correlation between microbial composition and the evolution of peptide profiles over cheese ripening. Results and discussion The results showed that NWS was a complex community of several biotypes belonging to a few species, namely, Streptococcus thermophilus, Lactobacillus helveticus, and Lactobacillus delbrueckii subsp. lactis. A new species-specific PCR assay was successful in discriminating the cheese-associated species Lacticaseibacillus casei, Lacticaseibacillus paracasei, Lacticaseibacillus rhamnosus, and Lacticaseibacillus zeae. Based on the resolved patterns of species and biotype distribution, Lcb. paracasei and Lcb. zeae were most frequently isolated after 24 and 30 months of ripening, while the number of biotypes was inversely related to the ripening time. Peptidomics analysis revealed more than 520 peptides in cheese samples. To the best of our knowledge, this is the most comprehensive survey of peptides in PR cheese. Most of them were from β-caseins, which represent the best substrate for LAB cell-envelope proteases. The abundance of peptides from β-casein 38-88 region continuously increased during ripening. Remarkably, this region contains precursors for the anti-hypertensive lactotripeptides VPP and IPP, as well as for β-casomorphins. We found that the ripening time strongly affects bioactive peptide profiles and that the occurrence of Lcb. zeae species is positively linked to the incidence of eight anti-hypertensive peptides. This result highlighted how the presence of specific LAB species is likely a pivotal factor in determining PR functional properties.
Collapse
Affiliation(s)
- Serena Martini
- Nutritional Biochemistry, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Laura Sola
- Microbial Biotechnologies and Fermentation Technologies, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alice Cattivelli
- Nutritional Biochemistry, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Marianna Cristofolini
- Lactic Acid Bacteria and Yeast Biotechnology, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | | | - Davide Tagliazucchi
- Nutritional Biochemistry, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Lisa Solieri
- Lactic Acid Bacteria and Yeast Biotechnology, Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
2
|
A review of methods for the inference and experimental confirmation of microbial association networks in cheese. Int J Food Microbiol 2022; 368:109618. [DOI: 10.1016/j.ijfoodmicro.2022.109618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/21/2022] [Accepted: 03/06/2022] [Indexed: 12/15/2022]
|
3
|
Łepecka A, Okoń A, Szymański P, Zielińska D, Kajak-Siemaszko K, Jaworska D, Neffe-Skocińska K, Sionek B, Trząskowska M, Kołożyn-Krajewska D, Dolatowski ZJ. The Use of Unique, Environmental Lactic Acid Bacteria Strains in the Traditional Production of Organic Cheeses from Unpasteurized Cow's Milk. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031097. [PMID: 35164362 PMCID: PMC8838525 DOI: 10.3390/molecules27031097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 12/04/2022]
Abstract
The aim of this study was to use local LAB cultures for the production of organic acid-rennet cheeses from unpasteurized cow’s milk. Under industrial conditions, three types of cheese were produced, i.e., traditionally with acid whey (AW), with starter culture L. brevis B1, or with starter culture L. plantarum Os2. Strains were previously isolated from traditional Polish cheeses. Chemical composition, physico-chemical, microbiological, and sensory studies during 2 months of storage were carried out. As a result of this research, it was found that the basic composition was typical for semi-hard, partially skimmed cheeses. Mainly saturated fatty acids were detected. The cheeses were rich in omega-3, -6, and -9 fatty acids and conjugated linoleic acid (CLA), and were characterized by good lipid quality indices (LQI). All of the cheeses were characterized by a high number of lactic acid bacteria, with Enterobacteriaceae, yeast, molds, and staphylococci contaminants, which is typical microbiota for unpasteurized milk products. Water activity, pH, and total acidity were typical. A lower oxidation-reduction potential (ORP) of cheeses with the addition of strains and stability of the products during storage were observed. The B1 and Os2 cheeses were lighter, less yellow, had a more intense milk and creamy aroma, were softer, moister, and more elastic than AW cheese. The research results indicate the possibility of using environmental LAB strains in the production of high-quality acid-rennet cheeses, but special attention should be paid to the production process due to the microbiological quality of the cheeses.
Collapse
Affiliation(s)
- Anna Łepecka
- Department of Meat and Fat Technology, Prof. Waclaw Dabrowski Institute of Agriculture and Food, Biotechnology—State Research Institute, 02-532 Warsaw, Poland; (A.O.); (P.S.); (Z.J.D.)
- Correspondence: ; Tel.: +48-225097025
| | - Anna Okoń
- Department of Meat and Fat Technology, Prof. Waclaw Dabrowski Institute of Agriculture and Food, Biotechnology—State Research Institute, 02-532 Warsaw, Poland; (A.O.); (P.S.); (Z.J.D.)
| | - Piotr Szymański
- Department of Meat and Fat Technology, Prof. Waclaw Dabrowski Institute of Agriculture and Food, Biotechnology—State Research Institute, 02-532 Warsaw, Poland; (A.O.); (P.S.); (Z.J.D.)
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (D.Z.); (K.K.-S.); (D.J.); (K.N.-S.); (B.S.); (M.T.); (D.K.-K.)
| | - Katarzyna Kajak-Siemaszko
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (D.Z.); (K.K.-S.); (D.J.); (K.N.-S.); (B.S.); (M.T.); (D.K.-K.)
| | - Danuta Jaworska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (D.Z.); (K.K.-S.); (D.J.); (K.N.-S.); (B.S.); (M.T.); (D.K.-K.)
| | - Katarzyna Neffe-Skocińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (D.Z.); (K.K.-S.); (D.J.); (K.N.-S.); (B.S.); (M.T.); (D.K.-K.)
| | - Barbara Sionek
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (D.Z.); (K.K.-S.); (D.J.); (K.N.-S.); (B.S.); (M.T.); (D.K.-K.)
| | - Monika Trząskowska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (D.Z.); (K.K.-S.); (D.J.); (K.N.-S.); (B.S.); (M.T.); (D.K.-K.)
| | - Danuta Kołożyn-Krajewska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (D.Z.); (K.K.-S.); (D.J.); (K.N.-S.); (B.S.); (M.T.); (D.K.-K.)
| | - Zbigniew J. Dolatowski
- Department of Meat and Fat Technology, Prof. Waclaw Dabrowski Institute of Agriculture and Food, Biotechnology—State Research Institute, 02-532 Warsaw, Poland; (A.O.); (P.S.); (Z.J.D.)
| |
Collapse
|
4
|
Møller CODA, Christensen BB, Rattray FP. Modelling the biphasic growth of non-starter lactic acid bacteria on starter-lysate as a substrate. Int J Food Microbiol 2020; 337:108937. [PMID: 33171308 DOI: 10.1016/j.ijfoodmicro.2020.108937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/11/2020] [Accepted: 10/11/2020] [Indexed: 11/19/2022]
Abstract
Since cheese is poor in energy for bacterial growth, it is believed that non-starter lactic acid bacteria growth and flavour development are supported by the nutrients from lysis of the starter culture. This study was performed to investigate the dynamics of interaction between starter and non-starter strains from cheese. A starter culture lysate was prepared by enzymatic digestion and tested as a growth substrate for Lactobacillus sp. strains. The two starter culture strains of Lactococcus lactis were also tested on the starter-lysate. All seventeen strains were individually inoculated at the level of 5.0 log10 cfu mL-1 in M17 broth, with or without 10% starter-lysate, and incubated at 30 °C for 140 h. The optical density600 nm was modelled with the primary log-transformed Logistic model with delay and lag phase duration, maximum specific growth rate as well as maximum population density obtained. Biphasic growth was mainly observed when the strains were able to utilize the starter-lysate as an energy source. To deal with the lack-of-fit related to the biphasic growth, the observed data points of the curve were divided after graphic evaluation and according to deviation of the residuals from the range ±0.05. Modelling was then performed in two phases by applying the same primary Logistic model in each of the two parts of the growth curve. Values of root-mean-square error and graphic evaluation indicated the good fitting of the data with the suggested approach. The growth of the two Lactococcus lactis strains was not affected by the starter-lysate. However, thirteen of the non-starter strains had their growth rates increased. The increase was greatest for Lactobacillus rhamnosus KU-LbR1, which reached maximum optical densities of 0.23 and 0.58 in the absence and the presence of starter-lysate, respectively. No effect of the starter-lysate was shown for the growth of Lactobacillus curvatus strains. The extend of the growth of non-starter strains on the starter-lysate was shown to be species and strain dependent.
Collapse
Affiliation(s)
- C O de A Møller
- University of Copenhagen, Department of Food Science, Section of Microbiology and Fermentation, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark.
| | - B B Christensen
- University of Copenhagen, Department of Food Science, Section of Microbiology and Fermentation, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark; Technical University of Denmark, DTU Bioengineering, Institute of Biotechnology and Biomedicine, Søltofts Plads, Bygning 221, DK-2800 Kgs. Lyngby, Denmark
| | - F P Rattray
- University of Copenhagen, Department of Food Science, Section of Microbiology and Fermentation, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark
| |
Collapse
|
5
|
The Microbiota of Edam Cheeses Determined by Cultivation and High-Throughput Sequencing of the 16S rRNA Amplicon. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to evaluate the microbiome of industrially produced ripened Edam cheeses by next-generation sequencing. The samples for analyses were collected in spring and autumn. Spring samples were characterized by significantly higher Lactococcus and Bacillus counts and lower counts of Enterobacteriaceae, Enterococcus, and yeasts than autumn samples. The predominant microorganisms identified by the Illumina high-throughput sequencing technology belonged to four phyla: Firmicutes, Actinobacteria, Proteobacteria and Bacteroidetes. The dominant species were starter culture bacteria. Lactobacillus rhamnosus, Lactobacillus kefiri, Lactobacillus kefiranofaciens, Lactobacillus casei, Streptococcus thermophilus, and Bifidobacterium had the highest share of microbial cheese communities. The number of γ-Proteobacteria reads was higher in autumn cheese samples. A high number of reads was also noted in the genus Clostridium. The counts of spore-forming bacteria of the genus Bacillus were higher in cheeses produced in spring. The study revealed highly similar relationships between the analyzed production periods. The present results contribute to the existing knowledge of cheese microbiota, and they can be used to improve and modify production processes based on the composition of microbial communities, as well as to improve the quality of the final product.
Collapse
|
6
|
Afzaal M, Saeed F, Ateeq H, Ahmed A, Ahmad A, Tufail T, Ismail Z, Anjum FM. Encapsulation of Bifidobacterium bifidum by internal gelation method to access the viability in cheddar cheese and under simulated gastrointestinal conditions. Food Sci Nutr 2020; 8:2739-2747. [PMID: 32566191 PMCID: PMC7300049 DOI: 10.1002/fsn3.1562] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 01/29/2023] Open
Abstract
The current study was conducted to elucidate the impact of encapsulation on the stability and viability of probiotic bacteria (Bifidobacterium bifidum) in cheddar cheese and in vitro gastrointestinal conditions. Purposely, probiotics were encapsulated in two hydrogel materials (kepa carrageenan and sodium alginate) by using an internal gelation method. Cheddar cheese was supplemented with unencapsulated/free and encapsulated probiotics. The product was subjected to physicochemical (pH, titrable acidity, moisture, and protein) and microbiological analysis for a period of 35 days of storage. Furthermore, the probiotics (free and encapsulated) were subjected to simulated gastrointestinal conditions. The initial probiotic count in cheese containing encapsulated probiotic was 9.13 log CFU/g and 9.15 log CFU/g which decreased to 8.10 log CFU/g and 7.67 log CFU/g while cheese containing unencapsulated probiotic initially 9.18 log CFU/g decreased to 6.58 log CFU/g over a period of 35 days of storage. The incorporation of unencapsulated and encapsulated probiotic affected the physicochemical, microbiological, and sensory attributes of the cheese. The encapsulated probiotic bacteria exhibited better survival as compared to unencapsulated probiotic. A 2.60 CFU/g log reduction in unencapsulated cells while just 1.03 CFU/g and 1.48 CFU/g log reduction in case of sodium alginate and K-carrageenan, respectively, was recorded. In short, encapsulation showed protection and stability to probiotic in hostile conditions.
Collapse
Affiliation(s)
- Muhammad Afzaal
- Institute of Home & Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Institute of Home & Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Huda Ateeq
- Institute of Home & Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmed
- Institute of Home & Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Awais Ahmad
- Institute of Home & Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Tabussam Tufail
- Institute of Home & Food SciencesGovernment College University FaisalabadFaisalabadPakistan
- University Institute of Diet & Nutrition SciencesFaculty of Allied Health Sciences, The University of LahoreLahorePakistan
| | - Zoria Ismail
- Institute of Home & Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | | |
Collapse
|
7
|
Altuntas S, Korukluoglu M. Growth and effect of garlic (Allium sativum) on selected beneficial bacteria. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.10618] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Gulati A, Galvin N, Hennessy D, McAuliffe S, O'Donovan M, McManus JJ, Fenelon MA, Guinee TP. Grazing of dairy cows on pasture versus indoor feeding on total mixed ration: Effects on low-moisture part-skim Mozzarella cheese yield and quality characteristics in mid and late lactation. J Dairy Sci 2018; 101:8737-8756. [DOI: 10.3168/jds.2018-14566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022]
|
9
|
Gobbetti M, Di Cagno R, Calasso M, Neviani E, Fox PF, De Angelis M. Drivers that establish and assembly the lactic acid bacteria biota in cheeses. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|