1
|
Tong W, Yang D, Qiu S, Tian S, Ye Z, Yang S, Yan L, Li W, Li N, Pei X, Sun Z, Liu C, Peng S, Li Y, Wang Q, Peng Z. Relevance of genetic causes and environmental adaptation of Cronobacter spp. isolated from infant and follow-up formula production factories and retailed products in China: A 7-year period of continuous surveillance based on genome-wide analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174368. [PMID: 38955273 DOI: 10.1016/j.scitotenv.2024.174368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
The possible contamination routes, environmental adaptation, and genetic basis of Cronobacter spp. in infant and follow-up formula production factories and retailed products in mainland China have been determined by laboratory studies and whole-genome comparative analysis in a 7-year nationwide continuous surveillance spanning from 2012 to 2018. The 2-year continuous multicenter surveillance of the production process (conducted in 2013 and 2014) revealed that the source of Cronobacter spp. in the dry-blending process was the raw dry ingredients and manufacturing environment (particularly in the vibro sieve and vacuum cleaner), while in the combined process, the main contamination source was identified as the packing room. It is important to note that, according to the contamination control knowledge obtained from the production process surveillance, the contamination rate of retail powdered infant formula (PIF) and follow-up formula (FUF) products in China decreased significantly from 2016 onward, after improving the hygiene management practices in factories. The prevalence of Cronobacter spp. in retailed PIF and FUF in China in 2018 was dramatically reduced from 1.55 % (61/3925, in 2012) to an average as low as 0.17 % (13/7655 in 2018). Phenotype determination and genomic analysis were performed on a total of 90 Cronobacter spp. isolates obtained from the surveillance. Of the 90 isolates, only two showed resistance to either cefazolin or cefoxitin. The multilocus sequence typing results revealed that C. sakazakii sequence type 1 (ST1), ST37, and C. malonaticus ST7 were the dominant sequence types (STs) collected from the production factories, while C. sakazakii ST1, ST4, ST64, and ST8 were the main STs detected in the retailed PIF and FUF nationwide. One C. sakazakii ST4 isolate (1.1 %, 1/90) had strong biofilm-forming ability and 13 isolates (14.4 %, 13/90) had weak biofilm-forming ability. Genomic analysis revealed that Cronobacter spp. have a relatively stable core-genome and an increasing pan-genome size. Plasmid IncFIB (pCTU3) was prevalent in this genus and some contained 14 antibacterial biocide- and metal-resistance genes (BMRGs) including copper, silver, and arsenic resistant genes. Plasmid IncN_1 was predicted to contain 6 ARGs. This is the first time that a multi-drug resistance IncN_1 type plasmid has been reported in Cronobacter spp. Genomic variations with respect to BMRGs, virulence genes, antimicrobial resistance genes (ARGs), and genes involved in biofilm formation were observed among strains of this genus. There were apparent differences in copies of bcsG and flgJ between the biofilm-forming group and non-biofilm-forming group, indicating that these two genes play key roles in biofilm formation. The findings of this study have improved our understanding of the contamination characteristics and genetic basis of Cronobacter spp. in PIF and FUF and their production environment in China and provide important guidance to reduce contamination with this pathogen during the production of PIF and FUF.
Collapse
Affiliation(s)
- Wei Tong
- Jiangxi Provincial Key Laboratory of Diagnosis and Traceability of Foodborne Diseases, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, PR China
| | - Dajin Yang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing City, PR China
| | - Shaofu Qiu
- Chinese PLA Center for Disease Control and Prevention, Beijing City, PR China
| | - Sai Tian
- Chinese PLA Center for Disease Control and Prevention, Beijing City, PR China
| | - Zehong Ye
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing City, PR China; School of Public Health, Shandong Second Medical University, Weifang City, Shandong Province, PR China
| | - Shuran Yang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing City, PR China
| | - Lin Yan
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing City, PR China
| | - Weiwei Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing City, PR China
| | - Ning Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing City, PR China
| | - Xiaoyan Pei
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing City, PR China
| | - Zhongqing Sun
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao City, Shandong Province, PR China
| | - Chengwei Liu
- Jiangxi Provincial Key Laboratory of Diagnosis and Traceability of Foodborne Diseases, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, PR China
| | - Silu Peng
- Jiangxi Provincial Key Laboratory of Diagnosis and Traceability of Foodborne Diseases, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, PR China
| | - Ying Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing City, PR China.
| | - Qi Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing City, PR China.
| | - Zixin Peng
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing City, PR China; Department of Nutrition and Food Safety, Peking Union Medical College; Research Unit of Food Safety, Chinese Academy of Medical Sciences, PR China.
| |
Collapse
|
2
|
Yang Y, Kong X, Niu B, Yang J, Chen Q. Differences in Biofilm Formation of Listeria monocytogenes and Their Effects on Virulence and Drug Resistance of Different Strains. Foods 2024; 13:1076. [PMID: 38611380 PMCID: PMC11011679 DOI: 10.3390/foods13071076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Listeria monocytogenes is recognized as one of the primary pathogens responsible for foodborne illnesses. The ability of L. monocytogenes to form biofilms notably increases its resistance to antibiotics such as ampicillin and tetracycline, making it exceedingly difficult to eradicate. Residual bacteria within the processing environment can contaminate food products, thereby posing a significant risk to public health. In this study, we used crystal violet staining to assess the biofilm-forming capacity of seven L. monocytogenes strains and identified ATCC 19112 as the strain with the most potent biofilm-forming. Subsequent fluorescence microscopy observations revealed that the biofilm-forming capacity was markedly enhanced after two days of culture. Then, we investigated into the factors contributing to biofilm formation and demonstrated that strains with more robust extracellular polymer secretion and self-agglutination capabilities exhibited a more pronounced ability to form biofilms. No significant correlation was found between surface hydrophobicity and biofilm formation capability. In addition, we found that after biofilm formation, the adhesion and invasion of cells were enhanced and drug resistance increased. Therefore, we hypothesized that the formation of biofilm makes L. monocytogenes more virulent and more difficult to remove by antibiotics. Lastly, utilizing RT-PCR, we detected the expression levels of genes associated with biofilm formation, including those involved in quorum sensing (QS), flagellar synthesis, and extracellular polymer production. These genes were significantly upregulated after biofilm formation. These findings underscore the critical relationship between extracellular polymers, self-agglutination abilities, and biofilm formation. In conclusion, the establishment of biofilms not only enhances L. monocytogenes' capacity for cell invasion and adhesion but also significantly increases its resistance to drugs, presenting a substantial threat to food safety.
Collapse
Affiliation(s)
- Yujuan Yang
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.Y.); (B.N.)
| | - Xiangxiang Kong
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China;
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.Y.); (B.N.)
| | - Jielin Yang
- Technical Centre for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200135, China
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.Y.); (B.N.)
| |
Collapse
|
3
|
Song D, Qi X, Huang Y, Jia A, Liang Y, Man C, Yang X, Jiang Y. Comparative proteomics reveals the antibiotic resistance and virulence of Cronobacter isolated from powdered infant formula and its processing environment. Int J Food Microbiol 2023; 407:110374. [PMID: 37678039 DOI: 10.1016/j.ijfoodmicro.2023.110374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/31/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Cronobacter species are opportunistic foodborne pathogens that can cause neonatal meningitis, sepsis, and necrotizing enterocolitis. In this genus, certain level strains have high mortality to infant (Cronobacter sakazakii and Cronobacter malonaticus) and antibiotic tolerance. Cronobacter has strong environmental tolerance (acid resistance, high temperature resistance, UV resistance, antibiotic resistance, etc.) and can survive in a variety of environments. It has been isolated in various production environments and products in several countries. However, the relationships between Cronobacter antibiotic tolerance and virulence remain unclear, especially at the molecular level. In this study, 96 strains of Cronobacter were isolated from powdered infant formula and its processing environment and screened for antibiotic tolerance, and proteomic maps of the representative strains of Cronobacter with antibiotic tolerance were generated by analyzing proteomics data using multiple techniques to identify protein that are implicated in Cronobacter virulence and antibiotic resistance. The increase in antibiotic tolerance of Cronobacter had a certain increase in the production of enterotoxin and hemolysin. Only triple tolerated Cronobacter sakazakii decreased the utilization of sialic acid. A total of 16,131 intracellular proteins were detected in eight representative strains, and different proteomes were present in strains with different antibiotic tolerance, including 56 virulence-related proteins. Multiple virulence proteins regulated by unknown genes were also found in the eight isolated representative strains.
Collapse
Affiliation(s)
- Danliangmin Song
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Xuehe Qi
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China.
| | - Yan Huang
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Ai Jia
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Yaqi Liang
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, Harbin 150030, China.
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, Harbin 150030, China.
| | - Yujun Jiang
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China.
| |
Collapse
|
4
|
Song D, Jia A, Liu B, Liu S, Dong K, Man C, Yang X, Jiang Y. Whole-transcriptome analysis after the acquisition of antibiotic resistance of Cronobacter sakazakii: Mechanisms of antibiotic resistance and virulence changes. Food Res Int 2023; 174:113664. [PMID: 37981356 DOI: 10.1016/j.foodres.2023.113664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
The emergence of antibiotic-resistant bacteria led to the misuse of antibiotics, resulting in the emergence of more resistant bacteria and continuous improvement in their resistance ability. Cronobacter sakazakii (C. sakazakii) has been considered a pathogen that harms infants. Incidents of C. sakazakii contamination have continued globally, several studies have indicated that C. sakazakii is increasingly resistant to antibiotics. A few studies have explored the mechanism of antibiotic resistance in C. sakazakii, and some have examined the antibiotic resistance and changes in virulence levels. We aimed to investigate the antibiotic resistance mechanism and virulence differences in C. sakazakii. The level of virulence factors of C. sakazakii was modified after induction by antibiotics compared with the antibiotic-sensitive strains, and the XS001-Ofl group had the strongest capacity to produce enterotoxin (85.18 pg/mL) and hemolysin (1.47 ng/mL). The biofilm formation capacity after induction significantly improved. The number of bases and mapped reads in all groups accounted for more than 55 % and 70 %, as detected by transcriptomic analysis. The resistance mechanism of different antibiotics was more common in efflux pumps, cationic antimicrobial peptides, and biofilm formation pathways. The level of antibiotic resistance mainly affected the expression of virulence genes associated with flagella assembly and synthesis.
Collapse
Affiliation(s)
- Danliangmin Song
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Ai Jia
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Biqi Liu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Shiyu Liu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Kai Dong
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, Harbin 150030, China.
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
5
|
Xiao L, An Q, Xu R, Li C, Zhang C, Ma K, Ji F, Azarpazhooh E, Ajami M, Rui X, Li W. Roles of luxS in regulation of probiotic characteristics and inhibition of pathogens in Lacticaseibacillus paracasei S-NB. Microb Pathog 2023; 184:106379. [PMID: 37802157 DOI: 10.1016/j.micpath.2023.106379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023]
Abstract
Lactic acid bacteria (LAB) have excellent tolerance to the gastrointestinal environment and high adhesion ability to intestinal epithelial cells, which could be closely related to the LuxS/AI-2 Quorum sensing (QS) system. Here, the crucial enzymes involved in the synthesis of AI-2 was analyzed in Lacticaseibacillus paracasei S-NB, and the luxS deletion mutant was constructed by homologous recombination based on the Cre-lox system. Afterwards, the effect of luxS gene on the probiotic activities in L. paracasei S-NB was investigated. Notably, the tolerance of simulated gastrointestinal digestion, AI-2 production, ability of auto-aggregation and biofilm formation significantly decreased (p < 0.05 for all) in the S-NB△luxS mutant. Compared to the wild-type S-NB, the degree of reduction in the relative transcriptional level of the biofilm -related genes in Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923 was diminished when co-cultured with S-NB△luxS. Furthermore, the inhibitory effect of S-NB△luxS on the adhesion (competition, exclusion and displacement) of E. coli ATCC 25922 and S. aureus ATCC 25923 to Caco-2 cells markedly decreased. Therefore, comprehensive analysis of the role by luxS provides an insight into the LuxS/AI-2 QS system of L. paracasei S-NB in the regulation of strain characteristics and inhibition of pathogens.
Collapse
Affiliation(s)
- Luyao Xiao
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Qi An
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Ruiqi Xu
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Chen Li
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Changliang Zhang
- Jiangsu New-Bio Biotechnology Co., Ltd., Jiangyin, Jiangsu, 214400, PR China; Jiangsu Biodep Biotechnology Co., Ltd., Jiangyin, Jiangsu, 214400, PR China
| | - Kai Ma
- Jiangsu New-Bio Biotechnology Co., Ltd., Jiangyin, Jiangsu, 214400, PR China; Jiangsu Biodep Biotechnology Co., Ltd., Jiangyin, Jiangsu, 214400, PR China
| | - Feng Ji
- Jiangsu New-Bio Biotechnology Co., Ltd., Jiangyin, Jiangsu, 214400, PR China; Jiangsu Biodep Biotechnology Co., Ltd., Jiangyin, Jiangsu, 214400, PR China
| | - Elham Azarpazhooh
- Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Iran
| | - Marjan Ajami
- National Nutrition and Food Technology Research Institute, School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Xin Rui
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Wei Li
- Sanya Institute of Nanjing Agricultural University, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
6
|
Insights into the mechanisms of Cronobacter sakazakii virulence. Microb Pathog 2022; 169:105643. [PMID: 35716925 DOI: 10.1016/j.micpath.2022.105643] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 10/18/2022]
Abstract
Cronobacter species have adapted to survive harsh conditions, particularly in the food manufacture environment, and can cause life-threatening infections in susceptible hosts. These opportunistic pathogens employ a multitude of mechanisms to aid their virulence throughout three key stages: environmental persistence, infection strategy, and systemic persistence in the human host. Environmental persistence is aided by the formation of biofilms, development of subpopulations, and high tolerance to environmental stressors. Successful infection in the human host involves several mechanisms such as protein secretion, motility, quorum sensing, colonisation, and translocation. Survival inside the host is achieved via competitive acquisition and utilization of minerals and metabolites respectively, coupled with host immune system evasion and antimicrobial resistance (AMR) mechanisms. Across the globe, Cronobacter sakazakii is associated with often fatal systemic infections in populations including neonates, infants, the elderly and the immunocompromised. By providing insight into the mechanisms of virulence utilised by this pathogen across these three stages, this review identifies current gaps in the literature. Further research into these virulence mechanisms is required to inform novel mitigation measures to improve global food safety with regards to this food-borne pathogen.
Collapse
|