1
|
Yang X, Yao J, Hu Y, Qin Z, Li J. Fungal Community Succession and Volatile Compound Changes during Fermentation of Laobaigan Baijiu from Chinese Hengshui Region. Foods 2024; 13:569. [PMID: 38397546 PMCID: PMC10888106 DOI: 10.3390/foods13040569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
To investigate the core fungal community succession and its effects of volatile compound production during different stages (D-1, D-2, D-3, E-4, E-5, and E-6) of Hengshui Laobaigan Baijiu, high-throughput sequencing (HTS) was carried out, accompanied by the identification and quantification of the volatile flavor compounds using headspace solid-phase coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS). HTS results demonstrated that the fungal community of stage D-1 was similar to that of E-4 after adding Daqu, while the richness and diversity of the fungal community were most prominent at stage E-6. Moreover, the addition of Daqu at the beginning of Ercha fermentation resulted in a significant increase in the relative abundances of the fungal community at the genus level, setting the stage for the production of volatile compounds. GC-MS analysis revealed the presence of a total of 45 volatile compounds. Combining the GC-MS result with the heat map and principal component analysis (PCA), the concentrations of volatile compounds were highest in stage E-5. Meanwhile, concentrations of esters, especially ethyl acetate, ethyl lactate, isoamyl acetate and ethyl hexanoate, were high in both stages E-5 and E-6. This indicated that stage E-5 was crucial to the fermentation process of Laobaigan Baijiu. Three fungal genera (Saccharomyces, Candida, and Pichia) were indicated as the core microbiota for the production of the main volatile flavor compounds of Laobaigan Baijiu through partial least square (PLS) analysis. The information provided in this study offered valuable insights into the fermentation mechanism of Laobaigan Baijiu, thereby serving as a theoretical framework for enhancing the quality of Baijiu and realizing cost-effective production.
Collapse
Affiliation(s)
- Xuelian Yang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China; (J.Y.); (Y.H.); (Z.Q.); (J.L.)
| | | | | | | | | |
Collapse
|
2
|
Santamarina-García G, Amores G, López de Armentia E, Hernández I, Virto M. Relationship between the Dynamics of Gross Composition, Free Fatty Acids and Biogenic Amines, and Microbial Shifts during the Ripening of Raw Ewe Milk-Derived Idiazabal Cheese. Animals (Basel) 2022; 12:3224. [PMID: 36428451 PMCID: PMC9686631 DOI: 10.3390/ani12223224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
This study reports for the first time the relationship between bacterial succession, characterized by high-throughput sequencing (sequencing of V3-V4 16S rRNA regions), and the evolution of gross composition, free fatty acids (FFAs) and biogenic amines (BAs) during cheese ripening. Specifically, Idiazabal PDO cheese, a raw ewe milk-derived semi-hard o hard cheese, was analysed. Altogether, 8 gross parameters were monitored (pH, dry matter, protein, fat, Ca, Mg, P and NaCl) and 21 FFAs and 8 BAs were detected. The ripening time influenced the concentration of most physico-chemical parameters, whereas the producer mainly affected the gross composition and FFAs. Through an O2PLS approach, the non-starter lactic acid bacteria Lactobacillus, Enterococcus and Streptococcus were reported as positively related to the evolution of gross composition and FFAs release, while only Lactobacillus was positively related to BAs production. Several environmental or non-desirable bacteria showed negative correlations, which could indicate the negative impact of gross composition on their growth, the antimicrobial effect of FFAs and/or the metabolic use of FFAs by these genera, and their ability to degrade BAs. Nonetheless, Obesumbacterium and Chromohalobacter were positively associated with the synthesis of FFAs and BAs, respectively. This research work provides novel information that may contribute to the understanding of possible functional relationships between bacterial communities and the evolution of several cheese quality and safety parameters.
Collapse
Affiliation(s)
- Gorka Santamarina-García
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Unibertsitate Ibilbidea 7, 01006 Vitoria-Gasteiz, Basque Country, Spain
| | - Gustavo Amores
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Unibertsitate Ibilbidea 7, 01006 Vitoria-Gasteiz, Basque Country, Spain
| | | | | | | |
Collapse
|
3
|
Jia W, Wang X, Shi L. Interference of endogenous benzoic acid with the signatures of sulfonic acid derivatives and carbohydrates in fermented dairy products. FUNDAMENTAL RESEARCH 2022. [DOI: 10.1016/j.fmre.2022.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
4
|
Sun X, Sun L, Su L, Wang H, Wang D, Liu J, Sun E, Hu G, Liu C, Gao A, Jin Y, Zhao L. Effects of Microbial Communities on Volatile Profiles and Biogenic Amines in Beef Jerky from Inner Mongolian Districts. Foods 2022; 11:foods11172659. [PMID: 36076844 PMCID: PMC9455903 DOI: 10.3390/foods11172659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Beef jerky is a traditional fermented meat product from Inner Mongolia, handcrafted by artisans. We investigated the bacteria of the microbial community, volatile flavor components, and biogenic amines of Inner Mongolia beef jerky via high-throughput sequencing, solid-phase microextraction with gas chromatography−mass spectrometry, and high-performance liquid chromatography, respectively. Thirty-three bacteria were identified, predominantly from the genera Pseudomonas (45.4%), Ralstonia (13.4%), and Acinetobacter (7.3%). Fifty-nine volatile flavor compounds and eight biogenic amines were detected. Based on Spearman’s correlation coefficient, 20 bacterial genera were significantly associated with the dominant volatile compounds in the beef jerky samples (p < 0.05). The results demonstrated that beef jerky may be toxic due to cadaverine, putrescine, and histamine; moreover, the amounts of putrescine and cadaverine were positively correlated with the abundance of unclassified_f_Enterobacteriaceae (p < 0.05). These findings shed light on the formation of the microbial community, flavor components, and biogenic amines of beef jerky, thereby providing a basis for improving its quality.
Collapse
|
5
|
Sun Y, Hua Q, Tian X, Xu Y, Gao P, Xia W. Effect of starter cultures and spices on physicochemical properties and microbial communities of fermented fish (Suanyu) after fermentation and storage. Food Res Int 2022; 159:111631. [DOI: 10.1016/j.foodres.2022.111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022]
|
6
|
Song X, Zheng Y, Zhou X, Deng Y. Quark Cheese Processed by Dense-Phase Carbon Dioxide: Shelf-Life Evaluation and Physiochemical, Rheological, Microstructural and Volatile Properties Assessment. Foods 2022; 11:2340. [PMID: 35954106 PMCID: PMC9367703 DOI: 10.3390/foods11152340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 12/11/2022] Open
Abstract
Dense-phase carbon dioxide (DPCD), a novel non-thermal processing technology, has attracted extensive attention due to its excellent performance in food sterilization and enzyme inactivation without quality deterioration. In this work, we aimed to extend the shelf life of quark cheese with DPCD and explore the effect of DPCD treatment as well as storage time on the quality of quark cheese. The sterilization parameters were optimized by means of orthogonal experiments, and the physiochemical, rheological, microstructural and volatile properties of cheese were investigated. The optimal DPCD treatment (20 MPa, 45 min, 55 °C) successfully extended the shelf life of quark cheese due to its inhibition effect on yeast and was able to slow down the proteolysis and alterations in pH and color of cheese. Cheese processed using DPCD after 14-day storage even displayed similar rheological properties to the control at day 0, from which bound water significantly migrated during storage. Moreover, DPCD contributed to the retention of the volatile profile of cheese during storage. This study demonstrated that DPCD is a promising pasteurization technology for quark cheese to improve its quality stability during storage.
Collapse
Affiliation(s)
- Xiaoyong Song
- College of Energy and Power Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co. Ltd., Shanghai 201100, China
| | - Xuefu Zhou
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Shanghai Food Safety and Engineering Technology Research Center, Shanghai 200240, China
| | - Yun Deng
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Shanghai Food Safety and Engineering Technology Research Center, Shanghai 200240, China
| |
Collapse
|
7
|
Jiang L, Chen Y, Deng L, Liu F, Wang T, Shi X, Wang B. Bacterial community diversity and its potential contributions to the flavor components of traditional smoked horsemeat sausage in Xinjiang, China. Front Microbiol 2022; 13:942932. [PMID: 35966695 PMCID: PMC9365192 DOI: 10.3389/fmicb.2022.942932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Smoked horsemeat sausage is a famous fermented traditional food in Xinjiang, China. However, the microbial diversity and its potential contributions to the flavor components of smoked horsemeat sausage are unclear. In this study, the microbial community and flavor components of smoked horsemeat sausage from six regions of Xinjiang were measured by using amplicon sequencing and headspace solid-phase microextraction combined with gas chromatography–mass spectrometry (HS-SPME-GC–MS) technology, respectively. Relations among microbial communities, flavor components and environmental factors were subsequently predicted based on redundancy analysis (RDA) and Monte Carlo permutation tests. Although smoked horsemeat sausage samples from different regions possessed distinct microbial communities, lactic acid bacteria (LAB) were identified as the dominant consortium in smoked horsemeat sausage. Lactobacillus, Vagococcus, Lactococcus, and Carnobacterium were detected at high abundance in different sausages. The moisture content, nitrite content, and pH of the sausage might be important factors influencing the dominant bacterial community, according to the RDA. Among the dominant consortia, the eight core bacterial genera showed considerable correlations with the formation of sixteen volatile compounds in smoked horsemeat sausage based on multivariate statistical analysis. For example, the levels of Leuconostoc and Lactobacillus were positively correlated with those of 1-hexadecanol, hexyl acetate, 2-methyl-phenol, 1-pentanol, d-limonene, and 2-heptanone, and the levels of Leuconostoc, Lactobacillus, and Weissella were negatively correlated with those of 1-octanol, acetic acid, octanal, heptanal, and 1-hexanol. This study will provide a theoretical basis for understanding the microbial metabolic modes of Xinjiang smoked horsemeat sausages.
Collapse
Affiliation(s)
- Lei Jiang
- College of Life and Geographical Sciences, Kashi University, Kashi, China
| | - Yu Chen
- Food College, Shihezi University, Shihezi, China
- College of Enology, Northwest A&F University, Yangling, China
| | - Li Deng
- Food College, Shihezi University, Shihezi, China
| | - Fei Liu
- College of Life and Geographical Sciences, Kashi University, Kashi, China
| | - Tengbin Wang
- Xinjiang Academy of Analysis and Testing, Wulumuqi, China
| | - Xuewei Shi
- Food College, Shihezi University, Shihezi, China
- Xuewei Shi,
| | - Bin Wang
- Food College, Shihezi University, Shihezi, China
- *Correspondence: Bin Wang,
| |
Collapse
|
8
|
Effect of supercritical carbon dioxide on bacterial community, volatile profiles and quality changes during storage of Mongolian cheese. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Du B, Meng L, Wu H, Yang H, Liu H, Zheng N, Zhang Y, Zhao S, Wang J. Source Tracker Modeling Based on 16S rDNA Sequencing and Analysis of Microbial Contamination Sources for Pasteurized Milk. Front Nutr 2022; 9:845150. [PMID: 35578614 PMCID: PMC9106800 DOI: 10.3389/fnut.2022.845150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Milk is rich in fat, protein, minerals, vitamins, peptides, immunologically active substances, and other nutrients, and it plays an important role in satisfying human nutrition and health. However, dairy product safety incidents caused by microbial contamination have occurred. We found that the total bacterial numbers in the pasteurized product were low and far below the limit requirements of the food safety standards of the European Union, the United States, and China. At the genus level, the primary microbial groups found in milk samples were Acinetobacter, Macrococcus, Pseudomonas, and Lactococcus, while in the equipment rinse water and air samples there was contamination by Stenotrophomonas and Acinetobacter. The Source Tracker model analysis indicated that the microorganisms in the final milk products were significantly related to the contamination in product tanks and raw milk. Therefore, it is the hope that this work can provide guidance to pinpoint contamination problems using the proper quality control sampling at specific stages in the pasteurization process.
Collapse
Affiliation(s)
- Bingyao Du
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Meng
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haoming Wu
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huaigu Yang
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Huimin Liu
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yangdong Zhang
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengguo Zhao
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Jiaqi Wang
| |
Collapse
|
10
|
Li Y, Wang J, Wang T, Lv Z, Liu L, Wang Y, Li X, Fan Z, Li B. Differences between Kazak Cheeses Fermented by Single and Mixed Strains Using Untargeted Metabolomics. Foods 2022; 11:966. [PMID: 35407053 PMCID: PMC8997636 DOI: 10.3390/foods11070966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Mixed fermentation improves the flavor quality of food. Untargeted metabolomics were used to evaluate the impact of mixed fermentation and single-strain fermentation on the volatile and non-volatile compound profiles of Kazak cheese. Lacticaseibacillus paracasei SMN-LBK and Kluyveromyces marxianus SMN-S7-LBK were used to make mixed-fermentation cheese (M), while L. paracasei SMN-LBK was applied in single-strain-fermentation cheese (S). A higher abundances of acids, alcohols, and esters were produced via mixed fermentation. Furthermore, 397 differentially expressed non-volatile metabolites were identified between S and M during ripening. The flavor compounds in mixed-fermentation cheese mainly resulted from ester production (ethyl butanoate, ethyl acetate, ethyl octanoate, and ethyl hexanoate) and amino acid biosynthesis (Asp, Glu, Gln, and Phe). The metabolites were differentially expressed in nitrogen metabolism, D-glutamine and D-glutamate metabolism, phenylalanine metabolism, D-alanine metabolism, and other metabolic pathways. The amount of flavor compounds was increased in M, indicating that L. paracasei SMN- LBK and K. marxianus SMN-S7-LBK had synergistic effects in the formation of flavor compounds. This study comprehensively demonstrated the difference in metabolites between mixed-fermentation and single-strain-fermentation cheese and provided a basis for the production of Kazak cheese with diverse flavor characteristics.
Collapse
Affiliation(s)
- Yandie Li
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Jianghan Wang
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Tong Wang
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Zhuoxia Lv
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Linting Liu
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Yuping Wang
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Xu Li
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
- Guangdong Yikewei Biotech Co., Ltd., Guangzhou 510520, China
| | - Zhexin Fan
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Baokun Li
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| |
Collapse
|
11
|
Campagnollo FB, Pedrosa GT, Kamimura BA, Furtado MM, Baptista RC, Nascimento HM, Alvarenga VO, Magnani M, Sant’Ana AS. Growth potential of three strains of Listeria monocytogenes and Salmonella enterica in Frescal and semi-hard artisanal Minas microcheeses: Impact of the addition of lactic acid bacteria with antimicrobial activity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Kumar Verma D, Thyab Gddoa Al-Sahlany S, Kareem Niamah A, Thakur M, Shah N, Singh S, Baranwal D, Patel AR, Lara Utama G, Noe Aguilar C. Recent trends in microbial flavour Compounds: A review on Chemistry, synthesis mechanism and their application in food. Saudi J Biol Sci 2022; 29:1565-1576. [PMID: 35280596 PMCID: PMC8913424 DOI: 10.1016/j.sjbs.2021.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/17/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022] Open
Abstract
Aroma and flavour represent the key components of food that improves the organoleptic characteristics of food and enhances the acceptability of food to consumers. Commercial manufacturing of aromatic and flavouring compounds is from the industry's microbial source, but since time immemorial, its concept has been behind human practices. The interest in microbial flavour compounds has developed in the past several decades because of its sustainable way to supply natural additives for the food processing sector. There are also numerous health benefits from microbial bioprocess products, ranging from antibiotics to fermented functional foods. This review discusses recent developments and advancements in many microbial aromatic and flavouring compounds, their biosynthesis and production by diverse types of microorganisms, their use in the food industry, and a brief overview of their health benefits for customers.
Collapse
Affiliation(s)
- Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | | | - Alaa Kareem Niamah
- Department of Food Science, College of Agriculture, University of Basrah, Basra City, Iraq
| | - Mamta Thakur
- Department of Food Technology, School of Sciences, ITM University, Gwalior 474001, Madhya Pradesh, India
| | - Nihir Shah
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy & Food Technology-MIDFT, Dudhsagar Dairy Campus, Mehsana-384 002, Gujarat, India
| | - Smita Singh
- Department of Nutrition and Dietetics, University Institute of Applied Health Sciences, Chandigarh University, Chandigarh 140413, Punjab, India
| | - Deepika Baranwal
- Department of Home Science, Arya Mahila PG College, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Ami R. Patel
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy & Food Technology-MIDFT, Dudhsagar Dairy Campus, Mehsana-384 002, Gujarat, India
| | - Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Center for Environment and Sustainability Science, Universitas Padjadjaran, Bandung 40132, Indonesia
| | - Cristobal Noe Aguilar
- Bioprocesses and Bioproducts Group, Food Research Department, School of Chemistry. Autonomous University of Coahuila, Saltillo Campus, 25280 Coahuila, México
| |
Collapse
|
13
|
Sheng J, Shan C, Liu Y, Zhang P, Li J, Cai W, Tang F. Comparative evaluation of the quality of red globe grape juice fermented by
Lactobacillus acidophilus
and
Lactobacillus plantarum. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jie Sheng
- Food college Shihezi University Xinjiang Uygur Autonomous Region Shihezi 832000 P. R. China
- Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables Ministry of Education Shihezi University Xinjiang Autonomous Region Shihezi 832000 PR China
| | - Chunhui Shan
- Food college Shihezi University Xinjiang Uygur Autonomous Region Shihezi 832000 P. R. China
- Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables Ministry of Education Shihezi University Xinjiang Autonomous Region Shihezi 832000 PR China
| | - Yuanye Liu
- Food college Shihezi University Xinjiang Uygur Autonomous Region Shihezi 832000 P. R. China
- Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables Ministry of Education Shihezi University Xinjiang Autonomous Region Shihezi 832000 PR China
| | - Panling Zhang
- Food college Shihezi University Xinjiang Uygur Autonomous Region Shihezi 832000 P. R. China
- Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables Ministry of Education Shihezi University Xinjiang Autonomous Region Shihezi 832000 PR China
| | - Jingjing Li
- Food college Shihezi University Xinjiang Uygur Autonomous Region Shihezi 832000 P. R. China
- Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables Ministry of Education Shihezi University Xinjiang Autonomous Region Shihezi 832000 PR China
| | - Wenchao Cai
- Food college Shihezi University Xinjiang Uygur Autonomous Region Shihezi 832000 P. R. China
- Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables Ministry of Education Shihezi University Xinjiang Autonomous Region Shihezi 832000 PR China
| | - Fengxian Tang
- Food college Shihezi University Xinjiang Uygur Autonomous Region Shihezi 832000 P. R. China
- Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables Ministry of Education Shihezi University Xinjiang Autonomous Region Shihezi 832000 PR China
| |
Collapse
|
14
|
Effects of chilling rate on the freshness and microbial community composition of lamb carcasses. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112559] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Developments in effective use of volatile organic compound analysis to assess flavour formation during cheese ripening. J DAIRY RES 2021; 88:461-467. [PMID: 34866564 DOI: 10.1017/s0022029921000790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the burgeoning demand for optimization of cheese production, ascertaining cheese flavour formation during the cheese making process has been the focal point of determining cheese quality. In this research reflection, we have highlighted how valuable volatile organic compound (VOC) analysis has been in assessing contingent cheese flavour compounds arising from non-starter lactic acid bacteria (NSLAB) along with starter lactic acid bacteria (SLAB), and whether VOC analysis associated with other high-throughput data might help provide a better understanding the cheese flavour formation during cheese process. It is widely known that there is a keen interest to merge all omics data to find specific biomarkers and/or to assess aroma formation of cheese. Towards that end, results of VOC analysis have provided valuable insights into the cheese flavour profile. In this review, we are pinpointing the effective use of flavour compound analysis to perceive flavour-forming ability of microbial strains that are convenient for dairy production, intertwining microbiome and metabolome to unveil potential biomarkers that occur during cheese ripening. In doing so, we summarised the functionality and integration of aromatic compound analysis in cheese making and gave reflections on reconsidering what the role of flavour-based analysis might have in the future.
Collapse
|
16
|
Yang C, You L, Kwok LY, Jin H, Peng J, Zhao Z, Sun Z. Strain-level multiomics analysis reveals significant variation in cheeses from different regions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Zheng X, Shi X, Wang B. A Review on the General Cheese Processing Technology, Flavor Biochemical Pathways and the Influence of Yeasts in Cheese. Front Microbiol 2021; 12:703284. [PMID: 34394049 PMCID: PMC8358398 DOI: 10.3389/fmicb.2021.703284] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/12/2021] [Indexed: 12/05/2022] Open
Abstract
Cheese has a long history and this naturally fermented dairy product contains a range of distinctive flavors. Microorganisms in variety cheeses are an essential component and play important roles during both cheese production and ripening. However, cheeses from different countries are still handmade, the processing technology is diverse, the microbial community structure is complex and the cheese flavor fluctuates greatly. Therefore, studying the general processing technology and relationship between microbial structure and flavor formation in cheese is the key to solving the unstable quality and standardized production of cheese flavor on basis of maintaining the flavor of cheese. This paper reviews the research progress on the general processing technology and key control points of natural cheese, the biochemical pathways for production of flavor compounds in cheeses, the diversity and the role of yeasts in cheese. Combined with the development of modern detection technology, the evolution of microbial structure, population evolution and flavor correlation in cheese from different countries was analyzed, which is of great significance for the search for core functional yeast microorganisms and the industrialization prospect of traditional fermented cheese.
Collapse
Affiliation(s)
| | - Xuewei Shi
- Food College, Shihezi University, Shihezi, China
| | - Bin Wang
- Food College, Shihezi University, Shihezi, China
| |
Collapse
|
18
|
Portable Electronic Nose for Analyzing the Smell of Nasal Secretions in Calves: Toward Noninvasive Diagnosis of Infectious Bronchopneumonia. Vet Sci 2021; 8:vetsci8050074. [PMID: 33925674 PMCID: PMC8145462 DOI: 10.3390/vetsci8050074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 12/31/2022] Open
Abstract
The paper demonstrates a new approach to identify healthy calves (“healthy”) and naturally occurring infectious bronchopneumonia (“sick”) calves by analysis of the gaseous phase over nasal secretions using 16 piezoelectric sensors in two portable devices. Samples of nasal secretions were obtained from 50 red-motley Holstein calves aged 14–42 days. Calves were subjected to rectal temperature measurements, clinical score according to the Wisconsin respiratory scoring chart, thoracic auscultation, and radiography (Carestream DR, New York, USA). Of the 50 calves, we included samples from 40 (20 “healthy” and 20 “sick”) in the training sample. The remaining ten calves (five “healthy” and five “sick”) were included in the test sample. It was possible to divide calves into “healthy” and “sick” groups according to the output data of the sensor arrays (maximum sensor signals and calculated parameters Ai/j) using the principal component linear discriminant analysis (PCA–LDA) with an accuracy of 100%. The adequacy of the PCA–LDA model was verified on a test sample. It was found that data of sensors with films of carbon nanotubes, zirconium nitrate, hydroxyapatite, methyl orange, bromocresol green, and Triton X-100 had the most significance for dividing samples into groups. The differences in the composition of the gaseous phase over the samples of nasal secretions for such a classification could be explained by the appearance or change in the concentrations of ketones, alcohols, organic carboxylic acids, aldehydes, amines, including cyclic amines or those with a branched hydrocarbon chain.
Collapse
|
19
|
Xiao J, Chen Y, Li J, Shi X, Deng L, Wang B. Evaluation of the Effect of Auxiliary Starter Yeasts With Enzyme Activities on Kazak Cheese Quality and Flavor. Front Microbiol 2020; 11:614208. [PMID: 33391244 PMCID: PMC7772356 DOI: 10.3389/fmicb.2020.614208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022] Open
Abstract
To investigate the effect of yeasts on Kazak cheese quality and flavor, three isolated yeasts (Kluyveromyces marxianus A2, Pichia kudriavzevii A11, and Pichia fermentans A19) were used to ferment cheeses and designated as StC, LhC, and WcC, respectively. The cheese fermented with a commercial lactic acid starter without adding yeast was used as control named LrC. The results showed that the texture of cheese added with yeasts were more brittle. K. marxianus A2 contributed to the formation of free amino acids and organic acids, especially glutamate and lactic acid. Moreover, K. marxianus A2 provides cheese with onion, oily, and floral aromas. Furthermore, P. kudriavzevii A11 promotes a strong brandy, herbaceous, and onion flavor. Although no significant aroma change was observed in PfC, it promoted the production of acetic acid, isoamyl acetate, and phenethyl acetate. These results indicate that yeasts are important auxiliary starters for cheese production.
Collapse
Affiliation(s)
- Jing Xiao
- College of Information Science and Technology, Shihezi University, Shihezi, China
| | - Yu Chen
- Food College, Shihezi University, Shihezi, China
| | - Jie Li
- Food College, Shihezi University, Shihezi, China
| | - Xuewei Shi
- Food College, Shihezi University, Shihezi, China
| | - Li Deng
- Food College, Shihezi University, Shihezi, China
| | - Bin Wang
- Food College, Shihezi University, Shihezi, China
| |
Collapse
|
20
|
Electronic Nose for Monitoring Odor Changes of Lactobacillus Species during Milk Fermentation and Rapid Selection of Probiotic Candidates. Foods 2020; 9:foods9111539. [PMID: 33114501 PMCID: PMC7692492 DOI: 10.3390/foods9111539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 12/04/2022] Open
Abstract
Probiotic bacteria have been associated with a unique production of aroma compounds in fermented foods but rapid methods for discriminating between foods containing probiotic, moderately probiotic, or non-probiotic bacteria remain aloof. An electronic nose (e-nose) is a high-sensitivity instrument capable of non-invasive volatile measurements of foods. In our study, we applied the e-nose to differentiate probiotic, moderately probiotic, and non-probiotic Lactobacillus bacteria strains at different fermentation time points (0th, 4th, and 11th) of milk fermentation. The pH of the changing milk medium was monitored with their corresponding increase in microbial cell counts. An e-nose with two gas chromatographic columns was used to develop classification models for the different bacteria groups and time points and to monitor the formation of the aromatic compounds during the fermentation process. Results of the e-nose showed good classification accuracy of the different bacteria groups at the 0th (74.44% for column 1 and 82.78% for column 2), the 4th (89.44% for column 1 and 92.22% for column 2), and the 11th (81.67% for column 1 and 81.67% for column 2) hour of fermentation. The loading vectors of the classification models showed the importance of some specific aroma compounds formed during the fermentation. Results show that aroma monitoring of the fermentation process with the e-nose is a promising and reliable analytical method for the rapid classification of bacteria strains according to their probiotic activity and for the monitoring of aroma changes during the fermentation process.
Collapse
|