1
|
Mwenifumbo M, Cookson AL, Zhao S, Fayaz A, Browne AS, Benschop J, Burgess SA. The characterisation of antimicrobial resistant Escherichia coli from dairy calves. J Med Microbiol 2023; 72. [PMID: 37578342 DOI: 10.1099/jmm.0.001742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Introduction. Dairy calves, particularly pre-weaned calves have been identified as a common source of multidrug resistant (MDR) Escherichia coli.Gap statement. E. coli strains isolated from dairy calves and the location of their resistance genes (plasmid or chromosomal) have not been well characterised.Aim. To characterise the phenotypic and genotypic features as well as the population structure of antimicrobial-resistant E. coli isolated from calves located on dairy farms that feed waste-milk to their replacement calves.Methodology. Recto-anal swab enrichments from 40 dairy calves (≤ 14 days old) located on four dairy farms were examined for tetracycline, streptomycin, ciprofloxacin, and third-generation cephalosporin resistant E. coli. Whole genome sequencing was performed using both short- and long-read technologies on selected antimicrobial resistant E. coli.Results. Fifty-eight percent (23/40) of calves harboured antimicrobial resistant E. coli: 43 % (17/40) harboured tetracycline resistant, and 23 % (9/40) harboured chromosomal mediated AmpC producing E. coli. Whole genome sequencing of 27 isolates revealed five sequence types, with ST88 being the dominant ST (17/27, 63 % of the sequenced isolates) followed by ST1308 (3/27, 11 %), along with the extraintestinal pathogenic E. coli lineages ST69 (3/27, 11 %), ST10 (2/27, 7 %), and ST58 (2/27, 7 %). Additionally, 16 isolates were MDR, harbouring additional resistance genes that were not tested phenotypically. Oxford Nanopore long-read sequencing technologies enabled the location of multiple resistant gene cassettes in IncF plasmids to be determined.Conclusion. Our study identified a high incidence of tetracycline and streptomycin-resistant E. coli in dairy calves, and highlighted the presence of multidrug-resistant strains, emphasising the need for further investigation into potential associations with farm management practices.
Collapse
Affiliation(s)
- Merning Mwenifumbo
- School of Veterinary Science, Hopkirk Research Institute, cnr University & Library Rds Massey University, Palmerston North 4442, New Zealand
- Present address: Faculty of Veterinary Medicine, Lilongwe University of Agriculture & Natural Resources, Lilongwe, Malawi
| | - Adrian L Cookson
- School of Veterinary Science, Hopkirk Research Institute, cnr University & Library Rds Massey University, Palmerston North 4442, New Zealand
- Food Systems Integrity, Hopkirk Research Institute, cnr University & Library Rds, AgResearch Ltd, Palmerston North 4442, New Zealand
| | - Shengguo Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ahmed Fayaz
- School of Veterinary Science, Hopkirk Research Institute, cnr University & Library Rds Massey University, Palmerston North 4442, New Zealand
| | - A Springer Browne
- School of Veterinary Science, Hopkirk Research Institute, cnr University & Library Rds Massey University, Palmerston North 4442, New Zealand
| | - Jackie Benschop
- School of Veterinary Science, Hopkirk Research Institute, cnr University & Library Rds Massey University, Palmerston North 4442, New Zealand
| | - Sara A Burgess
- School of Veterinary Science, Hopkirk Research Institute, cnr University & Library Rds Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
2
|
Toombs-Ruane LJ, Marshall JC, Benschop J, Drinković D, Midwinter AC, Biggs PJ, Grange Z, Baker MG, Douwes J, Roberts MG, French NP, Burgess SA. Extended-spectrum β-lactamase- and AmpC β-lactamase-producing Enterobacterales associated with urinary tract infections in the New Zealand community: a case-control study. Int J Infect Dis 2023; 128:325-334. [PMID: 36529370 DOI: 10.1016/j.ijid.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/28/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES To assess whether having a pet in the home is a risk factor for community-acquired urinary tract infections associated with extended-spectrum β-lactamase (ESBL)- or AmpC β-lactamase (ACBL)- producing Enterobacterales. METHODS An unmatched case-control study was conducted between August 2015 and September 2017. Cases (n = 141) were people with community-acquired urinary tract infection (UTI) caused by ESBL- or ACBL-producing Enterobacterales. Controls (n = 525) were recruited from the community. A telephone questionnaire on pet ownership and other factors was administered, and associations were assessed using logistic regression. RESULTS Pet ownership was not associated with ESBL- or ACBL-producing Enterobacterales-related human UTIs. A positive association was observed for recent antimicrobial treatment, travel to Asia in the previous year, and a doctor's visit in the last 6 months. Among isolates with an ESBL-/ACBL-producing phenotype, 126/134 (94%) were Escherichia coli, with sequence type 131 being the most common (47/126). CONCLUSIONS Companion animals in the home were not found to be associated with ESBL- or ACBL-producing Enterobacterales-related community-acquired UTIs in New Zealand. Risk factors included overseas travel, recent antibiotic use, and doctor visits.
Collapse
Affiliation(s)
- Leah J Toombs-Ruane
- (m)EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Jonathan C Marshall
- (m)EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand; School of Mathematical and Computational Sciences, Massey University, Palmerston North, New Zealand
| | - Jackie Benschop
- (m)EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Dragana Drinković
- Microbiology Department, North Shore Hospital, Auckland, New Zealand
| | - Anne C Midwinter
- (m)EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Patrick J Biggs
- (m)EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand; School of Natural Sciences, Massey University, Palmerston North, New Zealand; New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Zoë Grange
- (m)EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Michael G Baker
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Jeroen Douwes
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Mick G Roberts
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
| | - Nigel P French
- (m)EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand; New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand; Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Sara A Burgess
- (m)EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
3
|
Collis RM, Biggs PJ, Burgess SA, Midwinter AC, Brightwell G, Cookson AL. Prevalence and distribution of extended-spectrum β-lactamase and AmpC-producing Escherichia coli in two New Zealand dairy farm environments. Front Microbiol 2022; 13:960748. [PMID: 36033848 PMCID: PMC9403332 DOI: 10.3389/fmicb.2022.960748] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global threat to human and animal health, with the misuse and overuse of antimicrobials being suggested as the main driver of resistance. In a global context, New Zealand (NZ) is a relatively low user of antimicrobials in animal production. However, the role antimicrobial usage on pasture-based dairy farms, such as those in NZ, plays in driving the spread of AMR within the dairy farm environment remains equivocal. Culture-based methods were used to determine the prevalence and distribution of extended-spectrum β-lactamase (ESBL)- and AmpC-producing Escherichia coli from farm environmental samples collected over a 15-month period from two NZ dairy farms with contrasting management practices. Whole genome sequencing was utilised to understand the genomic epidemiology and antimicrobial resistance gene repertoire of a subset of third-generation cephalosporin resistant E. coli isolated in this study. There was a low sample level prevalence of ESBL-producing E. coli (faeces 1.7%; farm dairy effluent, 6.7% from Dairy 4 and none from Dairy 1) but AmpC-producing E. coli were more frequently isolated across both farms (faeces 3.3% and 8.3%; farm dairy effluent 38.4%, 6.7% from Dairy 1 and Dairy 4, respectively). ESBL- and AmpC-producing E. coli were isolated from faeces and farm dairy effluent in spring and summer, during months with varying levels of antimicrobial use, but no ESBL- or AmpC-producing E. coli were isolated from bulk tank milk or soil from recently grazed paddocks. Hybrid assemblies using short- and long-read sequence data from a subset of ESBL- and AmpC-producing E. coli enabled the assembly and annotation of nine plasmids from six E. coli, including one plasmid co-harbouring 12 antimicrobial resistance genes. ESBL-producing E. coli were infrequently identified from faeces and farm dairy effluent on the two NZ dairy farms, suggesting they are present at a low prevalence on these farms. Plasmids harbouring several antimicrobial resistance genes were identified, and bacteria carrying such plasmids are a concern for both animal and public health. AMR is a burden for human, animal and environmental health and requires a holistic “One Health” approach to address.
Collapse
Affiliation(s)
- Rose M. Collis
- The Hopkirk Research Institute, AgResearch Ltd., Massey University, Palmerston North, New Zealand
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- Rose M. Collis,
| | - Patrick J. Biggs
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Sara A. Burgess
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Anne C. Midwinter
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Gale Brightwell
- The Hopkirk Research Institute, AgResearch Ltd., Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Adrian L. Cookson
- The Hopkirk Research Institute, AgResearch Ltd., Massey University, Palmerston North, New Zealand
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- *Correspondence: Adrian L. Cookson,
| |
Collapse
|
4
|
Pattis I, Weaver L, Burgess S, Ussher JE, Dyet K. Antimicrobial Resistance in New Zealand-A One Health Perspective. Antibiotics (Basel) 2022; 11:antibiotics11060778. [PMID: 35740184 PMCID: PMC9220317 DOI: 10.3390/antibiotics11060778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance (AMR) is an increasing global threat that affects human, animal and, often less acknowledged, environmental health. This complex issue requires a multisectoral One Health approach to address the interconnectedness of humans, animals and the natural environment. The prevalence of AMR in these reservoirs varies widely among countries and thus often requires a country-specific approach. In New Zealand (NZ), AMR and antimicrobial usage in humans are relatively well-monitored and -understood, with high human use of antimicrobials and the frequency of resistant pathogens increasing in hospitals and the community. In contrast, on average, NZ is a low user of antimicrobials in animal husbandry systems with low rates of AMR in food-producing animals. AMR in New Zealand’s environment is little understood, and the role of the natural environment in AMR transmission is unclear. Here, we aimed to provide a summary of the current knowledge on AMR in NZ, addressing all three components of the One Health triad with a particular focus on environmental AMR. We aimed to identify knowledge gaps to help develop research strategies, especially towards mitigating AMR in the environment, the often-neglected part of the One Health triad.
Collapse
Affiliation(s)
- Isabelle Pattis
- Institute of Environmental Science and Research Ltd., Christchurch 8041, New Zealand
| | - Louise Weaver
- Institute of Environmental Science and Research Ltd., Christchurch 8041, New Zealand
| | - Sara Burgess
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand
| | - James E Ussher
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Kristin Dyet
- Institute of Environmental Science and Research Ltd., Porirua 5022, New Zealand
| |
Collapse
|
5
|
Antibiotic resistance and phylogenetic profiling of Escherichia coli from dairy farm soils; organic versus conventional systems. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100088. [PMID: 34977826 PMCID: PMC8688864 DOI: 10.1016/j.crmicr.2021.100088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/20/2021] [Accepted: 11/29/2021] [Indexed: 12/25/2022] Open
Abstract
First known comparison of antimicrobial resistance traits in E. coli strains from new zealand farms practicing organic and conventional husbandry. Potential extended spectrum β-lactamase producing strains isolated from dairy farm environments. Organic dairy farms tended to harbour fewer resistant isolates than those recovered from conventionally farmed counterparts. Evidence for anthroponotic transmission of resistant strains of human origin to farm environments. Implications for the spread of antimicrobial resistance traits from farm environments discussed.
The prevalence and spread of antimicrobial resistance (AMR) as a result of the persistent use and/or abuse of antimicrobials is a key health problem for health authorities and governments worldwide. A study of contrasting farming systems such as organic versus conventional dairy farming may help to authenticate some factors that may contribute to the prevalence and spread of AMR in their soils. A case study was conducted in organic and conventional dairy farms in the South Canterbury region of New Zealand. A total of 814 dairy farm soil E. coli (DfSEC) isolates recovered over two years were studied. Isolates were recovered from each of two farms practicing organic, and another two practicing conventional husbandries. The E. coli isolates were examined for their antimicrobial resistance (AMR) against cefoxitin, cefpodoxime, chloramphenicol, ciprofloxacin, gentamicin, meropenem, nalidixic acid, and tetracycline. Phylogenetic relationships were assessed using an established multiplex PCR method. The AMR results indicated 3.7% of the DfSEC isolates were resistant to at least one of the eight selected antimicrobials. Of the resistant isolates, DfSEC from the organic dairy farms showed a lower prevalence of resistance to the antimicrobials tested, compared to their counterparts from the conventional farms. Phylogenetic analysis placed the majority (73.7%) of isolates recovered in group B1, itself dominated by isolates of bovine origin. The tendency for higher rates of resistance among strains from conventional farming may be important for future decision-making around farming practices Current husbandry practices may contribute to the prevalence and spread of AMR in the industry.
Collapse
|
6
|
Burgess SA, Cookson AL, Brousse L, Ortolani E, Benschop J, Akhter R, Brightwell G, McDougall S. The epidemiology of AmpC-producing Escherichia coli isolated from dairy cattle faeces on pasture-fed farms. J Med Microbiol 2021; 70:001447. [PMID: 34672922 PMCID: PMC8604167 DOI: 10.1099/jmm.0.001447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction. Antibiotic use, particularly amoxicillin-clavulanic acid in dairy farming, has been associated with an increased incidence of AmpC-hyperproducing Escherichia coli.Gap statement. There is limited information on the incidence of AmpC-hyperproducing E. coli from seasonal pasture-fed dairy farms.Aim. We undertook a New Zealand wide cross-sectional study to determine the prevalence of AmpC-producing E. coli carried by dairy cattle.Methodology. Paddock faeces were sampled from twenty-six dairy farms and were processed for the selective growth of both extended-spectrum beta-lactamase (ESBL)- and AmpC-producing E. coli. Whole genome sequence analysis was carried out on 35 AmpC-producing E. coli.Results. No ESBL- or plasmid mediated AmpC-producing E. coli were detected, but seven farms were positive for chromosomal mediated AmpC-hyperproducing E. coli. These seven farms were associated with a higher usage of injectable amoxicillin antibiotics. Whole genome sequence analysis of the AmpC-producing E. coli demonstrated that the same strain (<3 SNPs difference) of E. coli ST5729 was shared between cows on a single farm. Similarly, the same strain (≤15 SNPs difference) of E. coli ST8977 was shared across two farms (separated by approximately 425 km).Conclusion. These results infer that both cow-to-cow and farm-to-farm transmission of AmpC-producing E. coli has occurred.
Collapse
Affiliation(s)
- Sara A. Burgess
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
- Food System Integrity, Hopkirk Research Institute, AgResearch Ltd, Palmerston North, New Zealand
| | - Adrian L. Cookson
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
- Food System Integrity, Hopkirk Research Institute, AgResearch Ltd, Palmerston North, New Zealand
| | - Lisa Brousse
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
- Present address: Lisa Brousse, BioMerieux, Grenoble, France
| | - Enrico Ortolani
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
- Ministry of Agriculture, Livestock and Food Supply, Brazil
| | - Jackie Benschop
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Rukhshana Akhter
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Gale Brightwell
- Food System Integrity, Hopkirk Research Institute, AgResearch Ltd, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Scott McDougall
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
- Cognosco Limited, Anexa Veterinary Services, Morrinsville, New Zealand
| |
Collapse
|