1
|
Basem A, Jasim DJ, Ghodratallah P, AbdulAmeer S, Mahmood AM, Khudhayer WJ, Dabis HK, Marefati M. Technical and financial feasibility of a chemicals recovery and energy and water production from a dairy wastewater treatment plant. Sci Rep 2024; 14:11143. [PMID: 38750120 PMCID: PMC11096408 DOI: 10.1038/s41598-024-61699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
Due to the high volume of wastewater produced from dairy factories, it is necessary to integrate a water recovery process with the treatment plant. Today, bipolar membrane electrodialysis units (BMEUs) are increasingly developed for wastewater treatment and reutilizing. This article aims to develop and evaluate (technical and cost analyses) a combined BMEU/batch reverse osmosis unit (BROU) process for the recovery of chemicals and water from the dairy wastewater plant. The combined BROU/BMEU process is able to simultaneously produce water and strong base-acid, and reduce power consumption due to the injection of concentrated feed flow into the BMEU. A comprehensive comparative analysis on the performances of two combined and stand-alone BMEU configurations are developed. The proposed combined technology for dairy factory wastewater treatment is designed on a new structure and configuration that can address superior cost analysis compared to similar technologies. Further, the optimal values of permeate flux and current density as two vital and influencing parameters on the performance of the studied dairy wastewater treatment process were calculated and discussed. From the outcomes, the total cost of production in the combined configuration has been reduced by approximately 26% compared to the stand-alone configuration. Increasing the feed concentration rate using the batch reverse osmosis process for the dairy wastewater treatment process can be an ideal solution from an economic point of view. Moreover, point (current density, feed concentration rate, total unit cost) = 328.9 , 7 , 14.37 can be considered as an optimal point for the economic performance of the studied wastewater treatment process.
Collapse
Affiliation(s)
- Ali Basem
- Faculty of Engineering, Warith Al-Anbiyaa University, Karbala, 56001, Iraq
| | - Dheyaa J Jasim
- Department of Petroleum Engineering, Al-Amarah University College, Maysan, Iraq
| | - Pooya Ghodratallah
- Department of Civil Engineering, College of Engineering, Cihan University-Erbil, Erbil, Iraq
- Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey
| | - S AbdulAmeer
- Department of Automobile Engineering, College of Engineering, Al-Musayab, University of Babylon, Babylon, Iraq
| | | | - Wisam J Khudhayer
- Department of Energy Engineering, College of Engineering, Al-Musayab, University of Babylon, Babylon, Iraq
| | | | - Mohammad Marefati
- Department of Energy Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Chamberland J, Brisson G, Doyen A, Pouliot Y. Innovations from pressure-driven membrane processes in cheese technology: from milk protein concentrates to sustainability and precision cheesemaking. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Valorization of Concentrated Dairy White Wastewater by Reverse Osmosis in Model Cheese Production. DAIRY 2022. [DOI: 10.3390/dairy3020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Treatment of dairy white wastewater (WW) by reverse osmosis (RO) is usually performed to generate process water and to reclaim dairy components for their valorization. For this study, a mixture of pasteurized milk and WW from a dairy plant was concentrated by RO to achieve a protein concentration similar to that of skimmed milk. Retentates, which are concentrated WW, were used in the preparation of cheese milk. The effect of using model concentrated WW was evaluated on (1) the soluble–colloidal equilibrium between protein and salt, (2) the milk-coagulation kinetics, and (3) the cheese composition and yield. An economic assessment was also carried out to support the decision-making process for implementing a new RO system in a dairy plant for the valorization of dairy WW. The results showed that substituting more than 50% of the amount of cheese milk with model pasteurized WW concentrates decreased the moisture-adjusted cheese yield and impaired the coagulation kinetics. Excessive cheese moisture was observed in cheeses that were made from 50% and 100% model WW concentrates, correlating with a change in the soluble–colloidal equilibrium of salts, especially in calcium. To achieve sustainable and economic benefits, the ratio of added WW concentrates to cheese milk must be less than 50%. However, for such an investment to be profitable to a dairy plant within 0.54 years, a large-size plant must generate 200 m3 of WW per day with at least 0.5% of total solids, as the economic analysis specific to our case suggests.
Collapse
|