1
|
Chen X, Zhang C, Guo J, Huang X, Lv R, Quan X. Thermal and Chemical Inactivation of Bacillus Phage BM-P1. J Food Prot 2024; 87:100223. [PMID: 38242288 DOI: 10.1016/j.jfp.2024.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Bacillus spp. are often used as probiotics; however, they can be infected by phages, leading to significant economic losses. Biocidal and thermal treatments are considered rapid and effective methods for controlling microbial contamination. To prevent viral contamination in industrial dairy production, the impact of temperature and biocides on the viability of Bacillus methylotrophic phage BM-P1 was assessed. The results demonstrated that reconstituted skim milk (RSM) as a medium showed the most effective protective effect on phage BM-P1. Treatment at 90°C for 5 min or 72°C for 10 min inactivated it to nondetectable levels from the initial titer of 7.19 ± 0.11 log, regardless of the culture medium. Sodium hypochlorite exhibited the best inactivating effect, which could reduce the phage titer below the detection level in 4 min at 50 ppm. Additionally, treatment with 75% ethanol for 20 min or 50% isopropanol for 30 min could achieve inactivation to nondetectable levels. The inactivating effect of peracetic acid was limited; even when treated at the highest concentration (0.45%) for 60 min, only a 2.47 ± 0.17 log reduction was observed. This study may provide some theoretical basis and data support for establishing measures against Bacillus spp. phages.
Collapse
Affiliation(s)
- Xia Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China; Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China.
| | - Can Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China; Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China
| | - Jing Guo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China; Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China
| | - Xuecheng Huang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China; Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China
| | - Ruirui Lv
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China; Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China
| | - Xingyu Quan
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, 010018, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, 010018, PR China; Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, 010018, PR China
| |
Collapse
|
2
|
Raza S, Wdowiak M, Paczesny J. An Overview of Diverse Strategies To Inactivate Enterobacteriaceae-Targeting Bacteriophages. EcoSal Plus 2023; 11:eesp00192022. [PMID: 36651738 PMCID: PMC10729933 DOI: 10.1128/ecosalplus.esp-0019-2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023]
Abstract
Bacteriophages are viruses that infect bacteria and thus threaten industrial processes relying on the production executed by bacterial cells. Industries bear huge economic losses due to such recurring and resilient infections. Depending on the specificity of the process, there is a need for appropriate methods of bacteriophage inactivation, with an emphasis on being inexpensive and high efficiency. In this review, we summarize the reports on antiphagents, i.e., antibacteriophage agents on inactivation of bacteriophages. We focused on bacteriophages targeting the representatives of the Enterobacteriaceae family, as its representative, Escherichia coli, is most commonly used in the bio-industry. The review is divided into sections dealing with bacteriophage inactivation by physical factors, chemical factors, and nanotechnology-based solutions.
Collapse
Affiliation(s)
- Sada Raza
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Mateusz Wdowiak
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Schubert C, Biere N, Brinks E, Samtlebe M, Neve H, Franz CMAP, Hinrichs J, Atamer Z. Does the high biodiversity of lactococcal bacteriophages allow predictions about their different UV-C susceptibilities? Int J Food Microbiol 2023; 401:110274. [PMID: 37331033 DOI: 10.1016/j.ijfoodmicro.2023.110274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/05/2023] [Accepted: 05/28/2023] [Indexed: 06/20/2023]
Abstract
Fermentation processes can only succeed if intact and active starter cultures are present. Bacteriophages, which can lyse bacteria and thus bring entire fermentation processes to a standstill, therefore pose a major threat. Cheese production, for example, is often affected. The by-product whey can be highly contaminated with bacteriophages (≤109 plaque-forming units/mL) and in this state, further utilization is a quality and processing risk. Therefore, an orthogonal process consisting of membrane filtration followed by UV-C irradiation could be applied to eliminate bacteriophages and to generate "phage-free" whey. In order to define suitable process parameters, 11 lactococcal bacteriophages belonging to different families and genera and differing in their morphology, genome size, heat resistance, and other attributes, were screened for their UV-C resistance in whey. P369 was found to be the most resistant and could thus be well-suited as a biomarker. Starting from a 4 log unit bacteriophage reduction by membrane filtration, another 5 log unit decrease should be realized when applying a UV-C dose of 5 J/cm2. A clear correlation of UV-C sensitivity to the chosen attributes studied such as bacteriophage morphology and genome size was difficult and ambiguous, presumably because other yet unidentified parameters are important. Mutation experiments were performed with the representative bacteriophage P008 by multiple cycles of UV-C irradiation and propagation. A few mutational events were found, but could not be linked to an artificially generated UV-C resistance, indicating that the process used would probably not lose its effectiveness over time.
Collapse
Affiliation(s)
- Christina Schubert
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Soft Matter Science and Dairy Technology, Garbenstraße 21, D-70599 Stuttgart, Germany.
| | - Natalia Biere
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology, Hermann-Weigmann-Straße 1, D-24103 Kiel, Germany
| | - Erik Brinks
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology, Hermann-Weigmann-Straße 1, D-24103 Kiel, Germany
| | - Meike Samtlebe
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Soft Matter Science and Dairy Technology, Garbenstraße 21, D-70599 Stuttgart, Germany
| | - Horst Neve
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology, Hermann-Weigmann-Straße 1, D-24103 Kiel, Germany
| | - Charles M A P Franz
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology, Hermann-Weigmann-Straße 1, D-24103 Kiel, Germany
| | - Jörg Hinrichs
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Soft Matter Science and Dairy Technology, Garbenstraße 21, D-70599 Stuttgart, Germany
| | - Zeynep Atamer
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Soft Matter Science and Dairy Technology, Garbenstraße 21, D-70599 Stuttgart, Germany
| |
Collapse
|
4
|
UV tolerance of Lactococcus lactis 936-type phages: Impact of wavelength, matrix, and pH. Int J Food Microbiol 2022; 378:109824. [DOI: 10.1016/j.ijfoodmicro.2022.109824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/17/2022] [Accepted: 06/26/2022] [Indexed: 11/22/2022]
|
5
|
Microencapsulation of Bacteriophages for the Delivery to and Modulation of the Human Gut Microbiota through Milk and Cereal Products. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
There is a bidirectional interaction between the gut microbiota and human health status. Disturbance of the microbiota increases the risk of pathogen infections and other diseases. The use of bacteriophages as antibacterial therapy or prophylaxis is intended to counteract intestinal disorders. To deliver bacteriophages unharmed into the gut, they must be protected from acidic conditions in the stomach. Therefore, an encapsulation method based on in situ complexation of alginate (2%), calcium ions (0.5%), and milk proteins (1%) by spray drying was investigated. Powdered capsules with particle sizes of ~10 µm and bacteriophage K5 titers of ~108 plaque forming units (pfu) g−1 were obtained. They protected the bacteriophages from acid (pH 2.5) in the stomach for 2 h and released them within 30 min under intestinal conditions (in vitro). There was no loss of viability during storage over two months (4 °C). Instead of consuming bacteriophage capsules in pure form (i.e., as powder/tablets), they could be inserted into food matrices, as exemplary shown in this study using cereal cookies as a semi-solid food matrix. By consuming bacteriophages in combination with probiotic organisms (e.g., via yoghurt with cereal cookies), probiotics could directly repopulate the niches generated by bacteriophages and, thus, contribute to a healthier life.
Collapse
|