1
|
Zorigt T, Furuta Y, Paudel A, Kamboyi HK, Shawa M, Chuluun M, Sugawara M, Enkhtsetseg N, Enkhtuya J, Battsetseg B, Munyeme M, Hang'ombe BM, Higashi H. Pan-genome analysis reveals novel chromosomal markers for multiplex PCR-based specific detection of Bacillus anthracis. BMC Infect Dis 2024; 24:942. [PMID: 39251928 PMCID: PMC11385494 DOI: 10.1186/s12879-024-09817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Bacillus anthracis is a highly pathogenic bacterium that can cause lethal infection in animals and humans, making it a significant concern as a pathogen and biological agent. Consequently, accurate diagnosis of B. anthracis is critically important for public health. However, the identification of specific marker genes encoded in the B. anthracis chromosome is challenging due to the genetic similarity it shares with B. cereus and B. thuringiensis. METHODS The complete genomes of B. anthracis, B. cereus, B. thuringiensis, and B. weihenstephanensis were de novo annotated with Prokka, and these annotations were used by Roary to produce the pan-genome. B. anthracis exclusive genes were identified by Perl script, and their specificity was examined by nucleotide BLAST search. A local BLAST alignment was performed to confirm the presence of the identified genes across various B. anthracis strains. Multiplex polymerase chain reactions (PCR) were established based on the identified genes. RESULT The distribution of genes among 151 whole-genome sequences exhibited three distinct major patterns, depending on the bacterial species and strains. Further comparative analysis between the three groups uncovered thirty chromosome-encoded genes exclusively present in B. anthracis strains. Of these, twenty were found in known lambda prophage regions, and ten were in previously undefined region of the chromosome. We established three distinct multiplex PCRs for the specific detection of B. anthracis by utilizing three of the identified genes, BA1698, BA5354, and BA5361. CONCLUSION The study identified thirty chromosome-encoded genes specific to B. anthracis, encompassing previously described genes in known lambda prophage regions and nine newly discovered genes from an undefined gene region to the best of our knowledge. Three multiplex PCR assays offer an accurate and reliable alternative method for detecting B. anthracis. Furthermore, these genetic markers have value in anthrax vaccine development, and understanding the pathogenicity of B. anthracis.
Collapse
Affiliation(s)
- Tuvshinzaya Zorigt
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
- Graduate School of Infectious Diseases, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | - Yoshikazu Furuta
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Graduate School of Infectious Diseases, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Atmika Paudel
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Graduate School of Infectious Diseases, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- GenEndeavor LLC, 26219 Eden Landing Rd, Hayward, CA, USA
| | - Harvey Kakoma Kamboyi
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Graduate School of Infectious Diseases, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Misheck Shawa
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Graduate School of Infectious Diseases, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mungunsar Chuluun
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Graduate School of Infectious Diseases, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Misa Sugawara
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Nyamdorj Enkhtsetseg
- Laboratory of Infectious Diseases and Immunology, Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Jargalsaikhan Enkhtuya
- Laboratory of Food Safety and Hygiene, Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Badgar Battsetseg
- Laboratory of Molecular Genetics, Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Musso Munyeme
- Public Health Unit, Disease Control Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Bernard M Hang'ombe
- Microbiology Unit, Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Hideaki Higashi
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Graduate School of Infectious Diseases, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Costantino V, Bahl P, Doolan C, de Silva C, Heslop D, Chen X, Lim S, MacIntyre CR. Modeling on the Effects of Deliberate Release of Aerosolized Inhalational Bacillus anthracis (Anthrax) on an Australian Population. Health Secur 2023; 21:61-69. [PMID: 36695665 DOI: 10.1089/hs.2022.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This study aimed to determine optimal mitigation strategies in the event of an aerosolized attack with Bacillus anthracis, a category A bioterrorism agent with a case fatality rate of nearly 100% if inhaled and untreated. To simulate the effect of an anthrax attack, we used a plume dispersion model for Sydney, Australia, accounting for weather conditions. We determined the radius of exposure in different sizes of attack scenarios by spore quantity released per second. Estimations of different spore concentrations were then used to calculate the exposed population to inform a Susceptible-Exposed-Infected-Recovered (SEIR) deterministic mathematical model. Results are shown as estimates of the total number of exposed and infected people, along with the burden of disease, to quantify the amount of vaccination and antibiotics doses needed for stockpiles. For the worst-case scenario, over 500,000 people could be exposed and over 300,000 infected. The number of deaths depends closely on timing to start postexposure prophylaxis. Vaccination used as a postexposure prophylaxis in conjunction with antibiotics is the most effective mitigation strategy to reduce deaths after an aerosolized attack and is more effective when the response starts early (2 days after release) and has high adherence, while it makes only a small difference when started late (after 10 days).
Collapse
Affiliation(s)
- Valentina Costantino
- Valentina Costantino, PhD, is a Postdoctoral Research Associate; in the Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Prateek Bahl
- Prateek Bahl, PhD, is a Postdoctoral Research Associate; at the School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, Australia
| | - Con Doolan
- Con Doolan, PhD, is a Professor and Associate Dean (Academic Programs); at the School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, Australia
| | - Charitha de Silva
- Charitha de Silva, PhD, is a Lecturer; at the School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, Australia
| | - David Heslop
- David Heslop, PhD, MPH, is an Associate Professor, School of Public Health and Community Medicine, University of New South Wales, Sydney, Australia
| | - Xin Chen
- Xin Chen, PhD, is a Postdoctoral Research Associate; in the Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Samsung Lim
- Samsung Lim, MA, PhD, is an Associate Professor, School of Civil and Environmental Engineering, University of New South Wales, Sydney, Australia
| | - Chandini Raina MacIntyre
- Chandini Raina MacIntyre, MBBS, MAE, PhD, is a Professor and Head; in the Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia.,Chandini Raina MacIntyre is also a Professor, College of Health Solutions and College of Public Service and Community Solutions, Arizona State University, Tempe, AZ
| |
Collapse
|
3
|
Affiliation(s)
- Mark D. Hoffman
- Department of Dermatology; Rush University Medical Center; Chicago; Illinois
| |
Collapse
|
4
|
Balali-Mood M, Moshiri M, Etemad L. Medical aspects of bio-terrorism. Toxicon 2013; 69:131-42. [PMID: 23339855 DOI: 10.1016/j.toxicon.2013.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/02/2013] [Accepted: 01/09/2013] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Bioterrorism is a terrorist action involving the intentional release or dissemination of a biological warfare agent (BWA), which includes some bacteria, viruses, rickettsiae, fungi or biological toxins. BWA is a naturally occurring or human-modified form that may kill or incapacitate humans, animals or plants as an act of war or terrorism. BWA is a weapon of choice for mass destruction and terrorism, because of the incubation period, less effective amount than chemical warfare agents, easily distribution, odorless, colorless, difficult to detect, no need of specialized equipment for production and naturally distribution which can easily be obtained. BWA may be disseminating as an aerosol, spray, explosive device, and by food or water. CLASSIFICATION Based on the risk for human health, BWAs have been prioritized into three categories of A, B and C. Category A includes microorganisms or toxins that easily spread, leading to intoxication with high death rates such as Anthrax, Botulism, Plague, Smallpox, Tularemia and Viral hemorrhagic fevers. Category B has lower toxicity with wider range, including Staphylococcal Entrotoxin type B (SEB), Epsilon toxin of Clostridium perfringens, Ricin, Saxotoxins, Abrin and Trichothecene mycotoxins. The C category includes emerging pathogens that could also be engineered for mass spread such as Hanta viruses, multidrug-resistant tuberculosis, Nipah virus, the tick-borne encephalitis viruses, hemorrhagic fever viruses and yellow fever. CLINICAL MANIFESTATIONS OF BIOTOXINS IN HUMAN: Clinical features and severity of intoxication depend on the agent and exposed dose, route of entry, individual variation and environmental factors. Onset of symptoms varies from 2-24 h in Ricin to 24-96 h in Botulism. Clinical manifestations also vary from irritation of the eyes, skin and mucus membranes in T2 toxin to an acute flaccid paralysis of bilateral cranial nerve impairment of descending manner in botulism. Most of the pyrogenic toxins such as SEB produce the same signs and symptoms as toxic shock syndrome including a rapid drop in blood pressure, elevated temperature, and multiple organ failure. MANAGEMENT There is no specific antidote or effective treatment for most of the biotoxins. The clinical management is thus more supportive and symptomatic. Fortunately vaccines are now available for most of BWA. Therefore, immunization of personnel at risk of exposure is recommended. CONCLUSION Biotoxins are very wide and bioterrorism is a heath and security threat that may induce national and international problems. Therefore, the security authorities, health professional and even public should be aware of bioterrorism.
Collapse
Affiliation(s)
- Mahdi Balali-Mood
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91735-348, Islamic Republic of Iran.
| | | | | |
Collapse
|
5
|
Hicks CW, Sweeney DA, Cui X, Li Y, Eichacker PQ. An overview of anthrax infection including the recently identified form of disease in injection drug users. Intensive Care Med 2012; 38:1092-104. [PMID: 22527064 DOI: 10.1007/s00134-012-2541-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/14/2012] [Indexed: 02/06/2023]
Abstract
PURPOSE Bacillus anthracis infection (anthrax) can be highly lethal. Two recent outbreaks related to contaminated mail in the USA and heroin in the UK and Europe and its potential as a bioterrorist weapon have greatly increased concerns over anthrax in the developed world. METHODS This review summarizes the microbiology, pathogenesis, diagnosis, and management of anthrax. RESULTS AND CONCLUSIONS Anthrax, a gram-positive bacterium, has typically been associated with three forms of infection: cutaneous, gastrointestinal, and inhalational. However, the anthrax outbreak among injection drug users has emphasized the importance of what is now considered a fourth disease form (i.e., injectional anthrax) that is characterized by severe soft tissue infection. While cutaneous anthrax is most common, its early stages are distinct and prompt appropriate treatment commonly produces a good outcome. However, early symptoms with the other three disease forms can be nonspecific and mistaken for less lethal conditions. As a result, patients with gastrointestinal, inhalational, or injectional anthrax may have advanced infection at presentation that can be highly lethal. Once anthrax is suspected, the diagnosis can usually be made with gram stain and culture from blood or tissue followed by confirmatory testing (e.g., PCR). While antibiotics are the mainstay of anthrax treatment, use of adjunctive therapies such as anthrax toxin antagonists are a consideration. Prompt surgical therapy appears to be important for successful management of injectional anthrax.
Collapse
Affiliation(s)
- Caitlin W Hicks
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44122, USA
| | | | | | | | | |
Collapse
|
6
|
Abstract
Bioterrorism is defined as the intentional use of biological, chemical, nuclear, or radiological agents to cause disease, death, or environmental damage. Early recognition of a bioterrorist attack is of utmost importance to minimize casualties and initiate appropriate therapy. The range of agents that could potentially be used as weapons is wide, however, only a few of these agents have all the characteristics making them ideal for that purpose. Many of the chemical and biological weapons can cause neurological symptoms and damage the nervous system in varying degrees. Therefore, preparedness among neurologists is important. The main challenge is to be cognizant of the clinical syndromes and to be able to differentiate diseases caused by bioterrorism from naturally occurring disorders. This review provides an overview of the biological and chemical warfare agents, with a focus on neurological manifestation and an approach to treatment from a perspective of neurological critical care.
Collapse
Affiliation(s)
- Katharina M Busl
- Department of Neurological Sciences, Rush Medical College, Rush University Medical Center, Chicago, IL 60612, USA.
| | | |
Collapse
|
7
|
Piroth L, Leroy J, Rogeaux O, Stahl JP, Mock M, Garin-Bastuji B, Madani N, Brezillon C, Mailles A, May TH, SPILF. Therapeutic recommendations for the management of patients exposed to Bacillus anthracis in natural settings. SPILF. Société de pathologie infectieuse de langue franc¸aise . Med Mal Infect 2011; 41:567-78. [PMID: 21420809 DOI: 10.1016/j.medmal.2011.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/14/2010] [Indexed: 11/26/2022]
Affiliation(s)
- L Piroth
- Service de Maladies Infectieuses et Tropicales, CHU Dijon, 21034 Dijon cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wagar EA, Mitchell MJ, Carroll KC, Beavis KG, Petti CA, Schlaberg R, Yasin B. A review of sentinel laboratory performance: identification and notification of bioterrorism agents. Arch Pathol Lab Med 2010; 134:1490-503. [PMID: 20923306 DOI: 10.5858/2010-0098-cp.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT The anthrax incident of 2001 in the United States prompted the College of American Pathologists (CAP), the Association of Public Health Laboratories, and the Centers for Disease Control and Prevention to develop exercises for Laboratory Response Network (LRN) sentinel laboratories. OBJECTIVE To provide an overview of the results of the CAP bioterrorism Laboratory Preparedness Survey (LPS, 2007) and Laboratory Preparedness Exercise (LPX, 2008) and assist LRN sentinel laboratories and public health agencies in planning for bioterrorism events. DESIGN Bioterrorism agents and nonbiothreat mimic organisms were provided in 2 mailings per year (2007 and 2008, 20 total challenges). Within each mailing, 2 to 3 agents were category A or category B bioterrorism agents (total of 10 categoric challenges). Some category A/B isolates were modified/vaccine strains. The total number of laboratories participating in these exercises ranged from 1316 to 1381. Isolate characteristics used to identify the organisms were compiled along with the participants' reporting actions. Educational commentary was provided with each exercise. RESULTS Acceptable identification responses were as follows: Bacillus anthracis, 90% (2007) and 99.9% (2008); Yersinia pestis, 83.8% (2007) and 87.6% (2008); and Francisella tularensis subsp Holarctica, 86.6% (2007) and 91.6% (2008). The time interval between specimen receipt and notification of results to an LRN reference laboratory decreased from more than 10 days in 2007 to 3 or 4 days in 2008 for some challenges. CONCLUSIONS The bioterrorism challenge program (LPS, LPX) provides important comparative data from more than 1300 sentinel laboratories that can be used by individual laboratories to evaluate their identification and LRN reporting performance.
Collapse
Affiliation(s)
- Elizabeth A Wagar
- Department of Laboratory Medicine, University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
The anthrax vaccine adsorbed vaccine generates protective antigen (PA)-Specific CD4+ T cells with a phenotype distinct from that of naive PA T cells. Infect Immun 2008; 76:4538-45. [PMID: 18678674 DOI: 10.1128/iai.00324-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular immune responses against protective antigen (PA) of Bacillus anthracis in subjects that received the anthrax vaccine adsorbed (AVA) vaccine were examined. Multiple CD4(+) T-cell epitopes within PA were identified by using tetramer-guided epitope mapping. PA-reactive CD4(+) T cells with a CD45RA(-) phenotype were also detected by direct ex vivo staining of peripheral blood mononuclear cells (PBMC) with PA-specific tetramers. Surprisingly, PA-specific T cells were also detected in PBMC of nonvaccinees after a single cycle of in vitro PA stimulation. However, PA-reactive CD4(+) T cells in nonvaccinees occurred at lower frequencies than those in vaccinees. The majority of PA-reactive T cells from nonvaccinees were CD45RA(+) and exhibited a Th0/Th1 cytokine profile. In contrast, phenotyping and cytokine profile analyses of PA-reactive CD4(+) T cells from vaccinees indicated that vaccination leads to commitment of PA-reactive T cells to a Th2 lineage, including generation of PA-specific, pre-Th2 central memory T cells. These results demonstrate that the current AVA vaccine is effective in skewing the development of PA CD4(+) T cells to the Th2 lineage. The data also demonstrated the feasibility of using class II tetramers to analyze CD4(+) cell responses and lineage development after vaccination.
Collapse
|
10
|
Kman NE, Nelson RN. Infectious agents of bioterrorism: a review for emergency physicians. Emerg Med Clin North Am 2008; 26:517-47, x-xi. [PMID: 18406986 DOI: 10.1016/j.emc.2008.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The terrorist attacks on the United States in 2001 and the anthrax release soon after brought the issue of bioterrorism to the forefront in the medical community. Bioterrorism is the use of a biologic weapon to create terror and panic. Biologic weapons, or bioweapons, can be bacteria, fungi, viruses, or biologic toxins. Because the emergency department represents the front line of defense for the recognition of agents of bioterrorism, it is essential that emergency physicians have the ability to quickly diagnose victims of bioterrorism. This review examines the most deadly and virulent category A agents of bioterrorism, that is, anthrax, smallpox, plague, botulism, hemorrhagic fever viruses, and tularemia. The focus is on epidemiology, transmission, clinical manifestations, diagnosis, and treatment.
Collapse
Affiliation(s)
- Nicholas E Kman
- Department of Emergency Medicine, The Ohio State University Medical Center, 146 Means Hall, 1654 Upham Drive, Columbus, OH 43210-1228, USA.
| | | |
Collapse
|
11
|
Eubanks LM, Dickerson TJ, Janda KD. Technological advancements for the detection of and protection against biological and chemical warfare agents. Chem Soc Rev 2007; 36:458-70. [PMID: 17325785 DOI: 10.1039/b615227a] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is a growing need for technological advancements to combat agents of chemical and biological warfare, particularly in the context of the deliberate use of a chemical and/or biological warfare agent by a terrorist organization. In this tutorial review, we describe methods that have been developed both for the specific detection of biological and chemical warfare agents in a field setting, as well as potential therapeutic approaches for treating exposure to these toxic species. In particular, nerve agents are described as a typical chemical warfare agent, and the two potent biothreat agents, anthrax and botulinum neurotoxin, are used as illustrative examples of potent weapons for which countermeasures are urgently needed.
Collapse
Affiliation(s)
- Lisa M Eubanks
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|