1
|
Pietri JE, Laroche M. Invasive indoor pests under the microbiological lens: bacterial and viral diversity from local to global scales in bed bugs and cockroaches. CURRENT OPINION IN INSECT SCIENCE 2025; 69:101344. [PMID: 39929276 DOI: 10.1016/j.cois.2025.101344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/15/2025] [Accepted: 02/03/2025] [Indexed: 02/19/2025]
Abstract
Essentially, all animal life interacts closely with an array of microorganisms, such as bacteria and viruses, which can have both beneficial and harmful effects. The advancement of high-throughput molecular biology approaches (DNA and RNA sequencing) has led to an ongoing boom in investigating the composition and functions of microbial communities (microbiota) associated with a wide range of animal taxa, including insects. As this area of investigation has blossomed, such research on indoor urban insect pests has lagged more widely studied species. However, over the last several years, significant strides have been made in understanding the diversity and biological roles of microbes associated with such insects. This review highlights and discusses recent key findings, focusing on bed bugs and cockroaches, two of the most prolific globally invasive indoor insect pests. Advances in this area of research have long-term implications for public health and for the development of novel pest control approaches.
Collapse
Affiliation(s)
- Jose E Pietri
- Purdue University, Department of Entomology, Center for Urban and Industrial Pest Management, West Lafayette, IN, USA; Purdue University, Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN, USA; Purdue University, Department of Biological Sciences, West Lafayette, IN, USA; University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, USA.
| | - Maureen Laroche
- University of Texas Medical Branch, Department of Microbiology & Immunology, Galveston, TX, USA; University of Texas Medical Branch, Department of Global Health, Galveston, TX, USA; Clima, Latin American Center of Excellence for Climate Change and Health, Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| |
Collapse
|
2
|
Selmi R, Belkahia H, Tayh G, Mezzi A, Chibani S, Ben Said M, Messadi L. First detection of Rickettsia felis and Ehrlichia canis in the common bed bug Cimex lectularius. Comp Immunol Microbiol Infect Dis 2024; 110:102200. [PMID: 38788400 DOI: 10.1016/j.cimid.2024.102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Bed bugs, common blood-feeding pests, have received limited attention regarding their potential involvement in emerging pathogen transmission. This study aimed to investigate the main vector-borne bacteria within bed bugs collected from Tunisian governorates and to genetically characterize the identified species. Molecular screening was conducted on field-collected bed bug samples, targeting zoonotic vector-borne bacteria from the Anaplasmataceae family, as well as the genera Rickettsia, Ehrlichia, Bartonella, and Borrelia. A total of 119 Cimex lectularius specimens were collected and grouped into 14 pools based on sampling Tunisian sites. Using genus-specific PCR assays, DNA of Rickettsia and Ehrlichia spp. was detected in a single pool. Sequencing and BLAST analysis of the obtained partial ompB and dsb sequences from positive samples revealed 100% similarity with those of Ehrlichia canis and Rickettsia felis available in GenBank. Obtained partial sequences showed phylogenetic similarity to R. felis and E. canis isolates found in dogs and ticks from American and European countries. To the best of our knowledge, this study is the first to investigate bed bugs in Tunisia and to report the worldwide identification of R. felis and E. canis DNA in the common bed bug, C. lectularius. These findings highlight the need for further research to explore the potential role of bed bugs in the epidemiology of these vector-borne bacteria.
Collapse
Affiliation(s)
- Rachid Selmi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia; Military Center of Veterinary Medicine, General Directorate of Military Health, Tunis, Tunisia.
| | - Hanène Belkahia
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia
| | - Ghassan Tayh
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia
| | - Abderrahmene Mezzi
- Military Center of Veterinary Medicine, General Directorate of Military Health, Tunis, Tunisia
| | - Sarra Chibani
- Military Center of Veterinary Medicine, General Directorate of Military Health, Tunis, Tunisia
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia; Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia
| | - Lilia Messadi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia
| |
Collapse
|
3
|
Hamlili FZ, Bérenger JM, Parola P. Cimicids of Medical and Veterinary Importance. INSECTS 2023; 14:392. [PMID: 37103207 PMCID: PMC10146278 DOI: 10.3390/insects14040392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Members of the Cimicidae family are significant pests for mammals and birds, and they have attracted medical and veterinary interest. A number of recent studies have investigated bed bugs, due to their dramatic resurgence all over the world. Indeed, bed bugs are of significant public health and socioeconomic importance since they lead to financial burdens and dermatological complications and may have mental and psychological consequences. It is important to note that certain cimicids with a preference for specific hosts (birds and bats) use humans as an alternative host, and some cimicids have been reported to willingly feed on human blood. In addition, members of the Cimicidae family can lead to economic burdens and certain species are the vectors for pathogens responsible for diseases. Therefore, in this review, we aim to provide an update on the species within the Cimicidae family that have varying medical and veterinary impacts, including their distribution and their associated microorganisms. Various microbes have been documented in bed bugs and certain important pathogens have been experimentally documented to be passively transmitted by bed bugs, although no conclusive evidence has yet associated them with epidemiological outbreaks. Additionally, among the studied cimicids (bat bugs, chicken bugs, and swallow bugs), only the American swallow bug has been considered to be a vector of several arboviruses, although there is no proven evidence of transmission to humans or animals. Further studies are needed to elucidate the reason that certain species in the Cimicidae family cannot be biologically involved in transmission to humans or animals. Additional investigations are also required to better understand the roles of Cimicidae family members in the transmission of human pathogens in the field.
Collapse
Affiliation(s)
- Fatima Zohra Hamlili
- IHU-Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
- Department of VITROME, Aix Marseille Univ, IRD, AP-HM Assistance Publique-Hôpitaux de Marseille, SSA, 13005 Marseille, France
| | - Jean Michel Bérenger
- IHU-Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
- Department of VITROME, Aix Marseille Univ, IRD, AP-HM Assistance Publique-Hôpitaux de Marseille, SSA, 13005 Marseille, France
| | - Philippe Parola
- IHU-Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
- Department of VITROME, Aix Marseille Univ, IRD, AP-HM Assistance Publique-Hôpitaux de Marseille, SSA, 13005 Marseille, France
| |
Collapse
|
4
|
A Comparative Study of Body Lice and Bed Bugs Reveals Factors Potentially Involved in Differential Vector Competence for the Relapsing Fever Spirochete Borrelia recurrentis. Infect Immun 2022; 90:e0068321. [PMID: 35384689 DOI: 10.1128/iai.00683-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Borrelia recurrentis is the causative agent of louse-borne relapsing fever and the only Borrelia species transmitted by an insect rather than a tick vector. While bed bugs (Cimex lectularius L.) are not established vectors of any human pathogens, a recent study reported that they may be competent vectors of B. recurrentis. However, many aspects of infection and transmission remain unclear in this possible secondary vector. Here, we carried out several quantitative laboratory studies to gain a better understanding of the host suitability of bed bugs relative to the established body louse vector as well as the factors that may affect the ability of bed bugs to transmit the pathogen. We fed bed bugs B. recurrentis and estimated the level and duration of infection in the hemolymph using live imaging. We performed quantitative PCR (qPCR) to examine whole-body spirochete levels and the occurrence of vertical transmission to progeny. We also developed an assay to compare the amounts of force required to release infectious hemolymph from recently engorged bed bugs and body lice. Finally, we analyzed humoral antibacterial activity in the hemolymph, hemolymph pH, and hemocyte activity in both insect species. Our results confirm that within 24 h of ingestion, B. recurrentis can penetrate the midgut epithelium of bed bugs and enter the hemolymph, overcoming a major host barrier, as in body lice. Once in the hemolymph, spirochetes remain visible for at least 4 days. Moreover, we show that bed bugs are more physically susceptible to crushing than body lice, suggesting that crushing is a feasible route for the natural dissemination of B. recurrentis from the hemolymph of bed bugs, as for body lice. Nonetheless, our data also indicate that bed bugs are suboptimal hosts for B. recurrentis, as the bacterium does not appear to proliferate to high levels or stably colonize the hemolymph and exhibits pleomorphism in this environment. In particular, our data suggest that hemolymph pH and unique cellular immune responses, rather than humoral effectors, may be involved in limiting spirochete survival in bed bugs. Notably, we document the formation of extracellular DNA traps by bed bug hemocytes for the first time. For these reasons, while bed bugs may be capable of limited transmission given their ecology, vector competence is probably minimal relative to body lice. Additional mechanistic studies of human pathogen infection of bed bugs may provide much-needed insight into the biological factors that restrict their ability to act as vectors and may reveal novel mechanisms of immunity.
Collapse
|
5
|
Pietri JE. Bed Bugs (Cimex spp. (Hemiptera: Cimicidae)) as Permanent Ectoparasites: A Rare But Potentially Significant Phenomenon. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2038-2039. [PMID: 34327537 DOI: 10.1093/jme/tjab136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Jose E Pietri
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
6
|
Molecular analysis of the blood meals and bacterial communities of bed bugs (Cimex lectularius L.) to assess interactions with alternative hosts. Parasitol Res 2021; 120:1209-1217. [PMID: 33559752 DOI: 10.1007/s00436-021-07079-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/02/2021] [Indexed: 01/04/2023]
Abstract
Common bed bugs (Cimex lectularius L.) are hematophagous pests present in urban environments across the globe. It is widely established that they have a strong host preference for humans. However, there are records of C. lectularius feeding upon a range of mammalian and avian hosts, including rodents, in the field. There is little information available about how frequently common bed bugs feed on alternative hosts in residential settings, but understanding this phenomenon has implications for both management of infestations and public health. Here, we examined cohorts of C. lectularius collected from 13 different dwellings in the state of New Jersey, USA, that were known to be simultaneously infested with house mice (Mus musculus domesticus). Host-specific quantitative polymerase chain reaction (qPCR) was used to determine if blood meals were taken from mice, while 16S rRNA gene amplicon sequencing was used to screen the bed bugs for the presence of zoonotic bacterial pathogens. We found no evidence that any of the bed bugs we collected fed on mice. Furthermore, the insects harbored depauperate bacterial communities that did not include known human pathogens. However, host-specific qPCR detected feline DNA in a pool of bed bugs from one dwelling, suggesting that interaction with domestic pets should be further investigated. Although sampling in this study was limited, the approach described herein will be useful for additional studies of the interactions between bed bugs and alternative blood meal hosts.
Collapse
|
7
|
Pietri JE. Case not Closed: Arguments for New Studies of the Interactions between Bed Bugs and Human Pathogens. Am J Trop Med Hyg 2020; 103:619-624. [PMID: 32342854 DOI: 10.4269/ajtmh.20-0121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bed bugs (Cimex spp.) are common ectoparasites of humans. Their ubiquity across diverse human environments combined with their blood-feeding behavior creates an ideal interface for the transmission of pathogenic microbes. Despite this potential, the current dogma is that bed bugs are not vectors of any known infectious agents. However, this conclusion is based largely on the results of studies conducted before the advent of modern molecular biology and the resurgence of bed bugs on a global scale. More importantly, a small but compelling body of modern research suggesting that bed bugs can potentially vector some human pathogens exists but is often overlooked. This article critically examines the current classification of the bed bug as an insect that does not transmit disease agents. In doing so, it highlights key knowledge gaps that still exist in understanding the potential of bed bugs as pathogen vectors and outlines several arguments for why new research on the topic is necessary.
Collapse
Affiliation(s)
- Jose E Pietri
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| |
Collapse
|