1
|
Hirsch AM, Khan N, Humm E, Rubbi M, Del Vecchio G, Ha SM, Pellegrini M, Gunsalus RP. Genome of Dietzia cinnamea 55, a desert-isolated microbe with plant growth-promoting properties for grain crops. Microbiol Resour Announc 2024; 13:e0025724. [PMID: 39254331 PMCID: PMC11465666 DOI: 10.1128/mra.00257-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/30/2024] [Indexed: 09/11/2024] Open
Abstract
Here, we report the genome sequence of Dietzia cinnamea 55, isolated from the Negev Desert, Israel. D. cinnamea 55 was found to promote the growth of several cereal crops (corn, wheat, and pearl millet) in greenhouse and field studies.
Collapse
Affiliation(s)
- Ann M. Hirsch
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California, USA
| | - Noor Khan
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California, USA
| | - Ethan Humm
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Mila Rubbi
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California, USA
| | - Giorgia Del Vecchio
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California, USA
| | - Sung Min Ha
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California, USA
- UCLA DOE Institute, University of California, Los Angeles, California, USA
| | - Robert P. Gunsalus
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
- UCLA DOE Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
2
|
Kaale SE, Machangu RS, Lyimo TJ. Molecular characterization and phylogenetic diversity of actinomycetota species isolated from Lake Natron sediments at Arusha, Tanzania. Microbiol Res 2024; 278:127543. [PMID: 37950928 DOI: 10.1016/j.micres.2023.127543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/13/2023]
Abstract
Soda lakes are naturally occurring ecosystems characterized by extreme environmental conditions especially high pH and salinity levels but harboring valuable microbial communities with medical and biotechnological potentials. Lake Natron is one of the soda lakes situated in eastern branch of the East African Gregory Rift valley, Tanzania. In this study, the taxonomy and phylogenetic diversity of Actinomycetota species were explored in Lake Natron using molecular techniques. The sequencing of their 16S rRNA gene resulted into 13 genera of phylum Actinomycetota namely Streptomyces, Microbacterium, Nocardiopsis, Gordonia, Dietzia, Micromonospora, Microcella, Pseudarthrobacter, Nocardioides, Actinotalea, Cellulomonas, Isoptericola, and Glutamicibacter. We describe for the first time, the isolation of Streptomyces lasalocidi, S. harbinensis, S. anthocyanicus, Microbacterium aureliae, Pseudarthrobacter sp., Nocardioides sp. and Glutamicibacter mishrai from soda lake habitats. It also reports for the first time, the isolation of Gordonia spp., Microcella sp. and Actinotalea sp. from an East African Soda Lake as well as isolation of S. pseudogriseolus, S. calidiresistens and Micromonospora spp. from a Tanzania soda lake. Furthermore, two putative novel species of the phylum Actinomycetota were identified. Given that Actinomycetota are known potential sources of important biotechnological compounds, we recommend the broadening of the scope of bioprospection in future to include the novel species from Lake Natron.
Collapse
Affiliation(s)
- Sadikiel E Kaale
- Department of Molecular Biology and Biotechnology, University of Dar es Salaam, Dar es Salaam, Tanzania; Department of Biochemistry and Molecular Biology, Saint Francis University College of Health and Allied Sciences, Ifakara-Morogoro, Tanzania
| | - Robert S Machangu
- Department of Microbiology, Saint Francis University College of Health and Allied Sciences, Ifakara-Morogoro, Tanzania
| | - Thomas J Lyimo
- Department of Molecular Biology and Biotechnology, University of Dar es Salaam, Dar es Salaam, Tanzania.
| |
Collapse
|
3
|
Santos RGD, Hurtado R, Rodrigues DLN, Lima A, Dos Anjos WF, Rifici C, Attili AR, Tiwari S, Jaiswal AK, Spier SJ, Mazzullo G, Morais-Rodrigues F, Gomide ACP, de Jesus LCL, Aburjaile FF, Brenig B, Cuteri V, Castro TLDP, Seyffert N, Santos A, Góes-Neto A, de Jesus Sousa T, Azevedo V. Comparative genomic analysis of the Dietzia genus: an insight into genomic diversity, and adaptation. Res Microbiol 2023; 174:103998. [PMID: 36375718 DOI: 10.1016/j.resmic.2022.103998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Dietzia strains are widely distributed in the environment, presenting an opportunistic role, and some species have undetermined taxonomic characteristics. Here, we propose the existence of errors in the classification of species in this genus using comparative genomics. We performed ANI, dDDH, pangenome and genomic plasticity analyses better to elucidate the phylogenomic relationships between Dietzia strains. For this, we used 55 genomes of Dietzia downloaded from public databases that were combined with a newly sequenced. Sequence analysis of a phylogenetic tree based on genome similarity comparisons and dDDH, ANI analyses supported grouping different Dietzia species into four distinct groups. The pangenome analysis corroborated the classification of these groups, supporting the idea that some species of Dietzia could be reassigned in a possible classification into three distinct species, each containing less variability than that found within the global pangenome of all strains. Additionally, analysis of genomic plasticity based on groups containing Dietzia strains found differences in the presence and absence of symbiotic Islands and pathogenic islands related to their isolation site. We propose that the comparison of pangenome subsets together with phylogenomic approaches can be used as an alternative for the classification and differentiation of new species of the genus Dietzia.
Collapse
Affiliation(s)
- Roselane Gonçalves Dos Santos
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Raquel Hurtado
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Diego Lucas Neres Rodrigues
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alessandra Lima
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Claudia Rifici
- Department of Veterinary Science, University of Messina (Italy), Polo Universitario dell'Annunziata, 98168 Messina (ME), Italy.
| | - Anna Rita Attili
- School of Biosciences and Veterinary Medicine, University of Camerino (Italy), Via Circonvallazione 93/95, 62024 Matelica (MC), Italy.
| | - Sandeep Tiwari
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Postgraduate Program in Microbiology, Institute of Biology, Federal University of Bahia, Salvador, BA, Brazil; Postgraduate Program in Immunology, Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - Arun Kumar Jaiswal
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sharon J Spier
- Department of Veterinary Medicine and Epidemiology, University of California, Davis, CA, USA.
| | - Giuseppe Mazzullo
- Department of Veterinary Science, University of Messina (Italy), Polo Universitario dell'Annunziata, 98168 Messina (ME), Italy.
| | - Francielly Morais-Rodrigues
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anne Cybelle Pinto Gomide
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luís Cláudio Lima de Jesus
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flavia Figueira Aburjaile
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Burckhardtweg 2, Göttingen, Germany.
| | - Vincenzo Cuteri
- School of Biosciences and Veterinary Medicine, University of Camerino (Italy), Via Circonvallazione 93/95, 62024 Matelica (MC), Italy.
| | - Thiago Luiz de Paula Castro
- Postgraduate Program in Microbiology, Institute of Biology, Federal University of Bahia, Salvador, BA, Brazil; Postgraduate Program in Immunology, Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil; Department of Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil.
| | - Núbia Seyffert
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Postgraduate Program in Microbiology, Institute of Biology, Federal University of Bahia, Salvador, BA, Brazil.
| | - Anderson Santos
- Department of Computer Science, Federal University of Uberlandia, Uberlandia, Brazil
| | - Aristóteles Góes-Neto
- Molecular and Computational Biology of Fungi Laboratory Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais Brazil.
| | - Thiago de Jesus Sousa
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Vasco Azevedo
- Cellular and Molecular Genetics Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
4
|
Gao L, Zhang Z, Xing Z, Li Q, Kong N, Wang L, Song L. The variation of intestinal autochthonous bacteria in cultured tiger pufferfish Takifugu rubripes. Front Cell Infect Microbiol 2022; 12:1062512. [PMID: 36583108 PMCID: PMC9792791 DOI: 10.3389/fcimb.2022.1062512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Intestinal autochthonous bacteria play important roles in the maintenance of the physiological homeostasis of animals, especially contributing to the host immune system. In the present study, the variation of autochthonous bacterial community in the intestinal tract of 2-7 months-old tiger pufferfish Takifugu rubripes and bacterial communities in the seawater of recirculating aquaculture system (RAS) and the following offshore sea cage aquaculture system (OSCS) were analyzed during the aquaculture period from May to October 2021. Proteobacteria was found to be the most dominant phyla in both intestinal and seawater bacterial communities, which accounted for 68.82% and 65.65% of the total bacterial abundance, respectively. Arcobacter was the most core bacterial taxon in the intestinal bacterial community, with the most dominant abundance (42.89%) at the genus level and dominant positions in co-occurrence relationships with other bacterial taxa (node-betweenness value of 150). Enterococcaceae was specifically enriched in the intestinal bacterial community of pufferfishes from RAS, while Vibrionaceae was enriched in the intestinal bacterial community from OSCS. The F-values of beta diversity analysis between intestinal and seawater bacterial communities generally increased from May (6.69) to October (32.32), indicating the increasing differences between the intestinal and seawater bacterial communities along with the aquaculture process. Four bacterial taxa of Weissella sp., Akkermansia muciniphila, Dietzia sp. and Psychrobacter pacificensis had significant correlations with immune response parameters, and they were suggested to be the indicators for immune status and pathological process of pufferfish. The knowledge about the specific core bacteria, potentially pathogenic bacteria and the change of bacterial community in the intestinal tract of cultured pufferfish is of great scientific significance and will contribute to the understanding of intestinal bacterial homeostasis and biosecurity practice in pufferfish aquaculture.
Collapse
Affiliation(s)
- Lei Gao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Ziyang Zhang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Zhen Xing
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Qingsong Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Ning Kong
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China,Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China,Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,*Correspondence: Linsheng Song,
| |
Collapse
|