1
|
Kuang J, Lin Y, Wang L, Yan Z, Wei J, Du J, Li Z. Effects of PEF on Cell and Transcriptomic of Escherichia coli. Microorganisms 2024; 12:1380. [PMID: 39065148 PMCID: PMC11278777 DOI: 10.3390/microorganisms12071380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Pulsed electric field (PEF) is an up-to-date non-thermal processing technology with a wide range of applications in the food industry. The inactivation effect of PEF on Escherichia coli was different under different conditions. The E. coli inactivated number was 1.13 ± 0.01 lg CFU/mL when PEF was treated for 60 min and treated with 0.24 kV/cm. The treatment times were found to be positively correlated with the inactivation effect of PEF, and the number of E. coli was reduced by 3.09 ± 0.01 lg CFU/mL after 100 min of treatment. The inactivation assays showed that E. coli was inactivated at electrical intensity (0.24 kV/cm) within 100 min, providing an effective inactivating outcome for Gram-negative bacteria. The purpose of this work was to investigate the cellular level (morphological destruction, intracellular macromolecule damage, intracellular enzyme inactivation) as well as the molecular level via transcriptome analysis. Field Emission Scanning Electron Microscopy (TFESEM) and Transmission Electron Microscope (TEM) results demonstrated that cell permeability was disrupted after PEF treatment. Entocytes, including proteins and DNA, were markedly reduced after PEF treatment. In addition, the activities of Pyruvate Kinase (PK), Succinate Dehydrogenase (SDH), and Adenosine Triphosphatase (ATPase) were inhibited remarkably for PEF-treated samples. Transcriptome sequencing results showed that differentially expressed genes (DEGs) related to the biosynthesis of the cell membrane, DNA replication and repair, energy metabolism, and mobility were significantly affected. In conclusion, membrane damage, energy metabolism disruption, and other pathways are important mechanisms of PEF's inhibitory effect on E. coli.
Collapse
Affiliation(s)
- Jinyan Kuang
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China; (J.K.); (Y.L.); (L.W.); (Z.Y.); (J.W.); (J.D.)
| | - Ying Lin
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China; (J.K.); (Y.L.); (L.W.); (Z.Y.); (J.W.); (J.D.)
| | - Li Wang
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China; (J.K.); (Y.L.); (L.W.); (Z.Y.); (J.W.); (J.D.)
| | - Zikang Yan
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China; (J.K.); (Y.L.); (L.W.); (Z.Y.); (J.W.); (J.D.)
| | - Jinmei Wei
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China; (J.K.); (Y.L.); (L.W.); (Z.Y.); (J.W.); (J.D.)
| | - Jin Du
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China; (J.K.); (Y.L.); (L.W.); (Z.Y.); (J.W.); (J.D.)
| | - Zongjun Li
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China; (J.K.); (Y.L.); (L.W.); (Z.Y.); (J.W.); (J.D.)
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
2
|
Mahnič-Kalamiza S, Kotnik T. All is not quiet on the food safety front thanks to pulsed electric field treatment: Comment on "Advances in pulsed electric stimuli as a physical method for treating liquid foods" by Farzan Zare, Negareh Ghasemi, Nidhi Bansal, Hamid Hosano. Phys Life Rev 2023; 47:17-19. [PMID: 37673002 DOI: 10.1016/j.plrev.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Affiliation(s)
- Samo Mahnič-Kalamiza
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, SI-1000 Ljubljana, Slovenia.
| | - Tadej Kotnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Shi R, Mu Z, Hu J, Jiang Z, Hou J. Non-thermal techniques as an approach to modify the structure of milk proteins and improve their functionalities: a review of novel preparation. Crit Rev Food Sci Nutr 2023:1-29. [PMID: 37811663 DOI: 10.1080/10408398.2023.2263571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND Milk proteins (MPs) have been widely used in the food industry due to their excellent functionalities. However, MPs are thermal-unstable substances and their functional properties are easily affected by heat treatment. Emerging non-thermal approaches (i.e., high-pressure homogenization (HPH), ultrasound (US), pulsed electric field (PEF)) have been increasingly popular. A detailed understanding of these approaches' impacts on the structure and functionalities of MPs can provide theoretical guidance for further development to accelerate their industrialization. SCOPE AND APPROACH This review assesses the mechanisms of HPH, US and PEF technologies on the structure and functionalities of MPs from molecular, mesoscopic and macroscopic levels, elucidates the modifications of MPs by these theologies combined with other methods, and further discusses their existing issues and the development in the food filed. KEY FINDINGS AND CONCLUSIONS The structure of MPs changed after HPH, US and PEF treatment, affecting their functionalities. The changes in these properties of MPs are related to treated-parameters of used-technologies, the concentration of MPs, as well as molecular properties. Additionally, these technologies combined with other methods could obtain some outstanding functional properties for MPs. If properly managed, these theologies can be tailored for manufacturing superior functional MPs for various processing fields.
Collapse
Affiliation(s)
- Ruijie Shi
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, PR China
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng, PR China
- National Enterprise Technology Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd, Huhhot, PR China
| | - Zhishen Mu
- National Enterprise Technology Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd, Huhhot, PR China
| | - Jialun Hu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, PR China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, PR China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, PR China
| |
Collapse
|
4
|
Habinshuti I, Nsengumuremyi D, Muhoza B, Ebenezer F, Yinka Aregbe A, Antoine Ndisanze M. Recent and novel processing technologies coupled with enzymatic hydrolysis to enhance the production of antioxidant peptides from food proteins: A review. Food Chem 2023; 423:136313. [PMID: 37182498 DOI: 10.1016/j.foodchem.2023.136313] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Antioxidant peptides obtained through enzymatic hydrolysis of food proteins exhibit a broad range of bioactivities both in vitro and in vivo models. The antioxidant peptides showed the potential to fight against the reactive oxygen species, free radicals and other pro-oxidative substances which are considered the source of various chronic diseases for humans. Both animals and plants have been recognized as natural protein sources and attracted much research interest over the synthetic ones in terms of safety. However, the main challenge remains to increase the antioxidant peptides yield, reduce the enzyme quantity and the reaction time. Consequently, different efficient and innovative food processing technologies such as thermal, ultrasound, microwave, high hydrostatic pressure, pulsed electric field, etc. have been developed and currently used to treat food proteins before (pretreatment) or during the enzymatic hydrolysis (assisted). Those technologies were found to significantly enhance the degree of hydrolysis and the production of substantial antioxidant peptides. These emerging technologies enhance the enzymatic hydrolysis by inducing protein denaturation/unfolding, and the enzymatic activation without altering their functional and nutritional properties. This review discusses the state of the art of thermal, ultrasound, high hydrostatic pressure, microwave, and pulsed electric field techniques, their applications while coupled with enzymatic hydrolysis, their comparison and potential challenges for the production of antioxidant peptides from food proteins.
Collapse
Affiliation(s)
- Ildephonse Habinshuti
- INES-Ruhengeri, Institute of Applied Sciences, B.P. 155, Ruhengeri, Rwanda; Organization of African Academic Doctors (OAAD), Off Kamiti Road P.O. Box 25305-00100, Nairobi, Kenya; Thought For Food Foundation, 2101 Highland Ave, Birmingham, Alabama 35205, USA.
| | | | - Bertrand Muhoza
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Falade Ebenezer
- Organization of African Academic Doctors (OAAD), Off Kamiti Road P.O. Box 25305-00100, Nairobi, Kenya
| | - Afusat Yinka Aregbe
- Organization of African Academic Doctors (OAAD), Off Kamiti Road P.O. Box 25305-00100, Nairobi, Kenya
| | | |
Collapse
|
5
|
Ceribeli C, Otte J, Walkling-Ribeiro M, Cardoso DR, Ahrné LM. Impact of non-thermal pasteurization technologies on vitamin B12 content in milk. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
6
|
Identification and Optimization of a Novel Taxanes Extraction Process from Taxus cuspidata Needles by High-Intensity Pulsed Electric Field. Molecules 2022; 27:molecules27093010. [PMID: 35566363 PMCID: PMC9104932 DOI: 10.3390/molecules27093010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/24/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
Taxanes are a series of natural compounds with great application potential in antitumor therapy, whereas the lack of efficient taxanes extraction methods significantly hinders the development of taxanes. The high-intensity pulsed electric field (PEF) is a novel technology used to extract bioactive ingredients from food and other natural products. However, the prospect of using PEF for taxanes extraction remains to be elucidated. Herein, we extracted taxanes from Taxus cuspidata via PEF and explored the effects of seven extraction conditions on the yields of target compounds. The Placket–Burman design (PBD) assay revealed that electric field strength, pulse number, and particle size are key factors for taxanes extraction. The response surface methodology (RSM) and back-propagation neural network conjugated with genetic algorithm (GA-BP) were further used to model and predict the optimal extraction conditions, and GA-BP exerted higher reliability, leading to a maximum extraction yield of 672.13 μg/g under electric field strength of 16 kV/cm, pulse number of 8, particle size of 160 meshes, solid–liquid ratio of 1:60, a single extraction, centrifugal speed of 8000 r/min, and flow rate of 7 mL/min, which was 1.07–1.84 folds that of control, solid–liquid extraction (SL), and ultrasonic extraction (US) groups. Additionally, the scanning electron microscopy (SEM) results indicated that the sample particles extracted by PEF method exhibited a coarser surface morphology. Thus, we present for the first time that PEF is feasible for the extraction of taxanes from Taxus cuspidata and highlight the application value of the PBD, RSM, and GA-BP models in parameters optimization during extraction process.
Collapse
|
7
|
Zand E, Schottroff F, Steinacker E, Mae-Gano J, Schoenher C, Wimberger T, Wassermann KJ, Jaeger H. Advantages and limitations of various treatment chamber designs for reversible and irreversible electroporation in life sciences. Bioelectrochemistry 2021; 141:107841. [PMID: 34098460 DOI: 10.1016/j.bioelechem.2021.107841] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/25/2023]
Abstract
The fundamental mechanisms of pulsed electric fields on biological cells are not yet fully elucidated, though it is apparent that membrane electroporation plays a crucial role. Little is known about treatment-chamber-specific effects, and systematic studies are scarce. Thus, the present study evaluates the (dis-)advantages of various treatment chamber designs for liquid applications at differing scales. Three chambers, namely parallel plate microfluidic (V̇: 0.1 ml/min; titanium electrodes), co-linear meso (V̇: 5.0 ml/min; stainless steel electrodes), and co-linear macro (V̇: 83.3 ml/min; stainless steel electrodes) chambers, were studied. Electroporation effects on Escherichia coli in media with 0.1-10.0 mS/cm were evaluated by plate counts and flow cytometry at 8, 16, and 20 kV/cm. For the microfluidic chamber, predominantly irreversible electroporation (2.5 logs10 reductions) was seen at 0.1 mS/cm, while high irreversible electroporation (4.2 logs10 reductions) at 10.0 mS/cm was observed for the macro chamber. The meso chamber indicated a similar trend towards increased conductivity, even though only low inactivation levels were present. Variation in conductivity and electrode configuration or area likely induces effects resulting in distinct electroporation levels, as observed for the micro and macro chamber. Suitable application scenarios, depending on targeted electroporation effects, were suggested.
Collapse
Affiliation(s)
- Elena Zand
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
| | - Felix Schottroff
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria; BOKU Core Facility Food & Bio Processing, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
| | - Elisabeth Steinacker
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Jennifer Mae-Gano
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Christoph Schoenher
- Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Terje Wimberger
- Health & Environment Department, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Klemens J Wassermann
- Health & Environment Department, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Henry Jaeger
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
8
|
Effects of pulsed electric field on fat globule structure, lipase activity, and fatty acid composition in raw milk and milk with different fat globule sizes. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102548] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Schottroff F, Knappert J, Eppmann P, Krottenthaler A, Horneber T, McHardy C, Rauh C, Jaeger H. Development of a Continuous Pulsed Electric Field (PEF) Vortex-Flow Chamber for Improved Treatment Homogeneity Based on Hydrodynamic Optimization. Front Bioeng Biotechnol 2020; 8:340. [PMID: 32426339 PMCID: PMC7203427 DOI: 10.3389/fbioe.2020.00340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/27/2020] [Indexed: 11/13/2022] Open
Abstract
Pulsed electric fields (PEF) treatment is an effective process for preservation of liquid products in food and biotechnology at reduced temperatures, by causing electroporation. It may contribute to increase retention of heat-labile constituents with similar or enhanced levels of microbial inactivation, compared to thermal processes. However, especially continuous PEF treatments suffer from inhomogeneous treatment conditions. Typically, electric field intensities are highest at the inner wall of the chamber, where the flow velocity of the treated product is lowest. Therefore, inhomogeneities of the electric field within the treatment chamber and associated inhomogeneous temperature fields emerge. For this reason, a specific treatment chamber was designed to obtain more homogeneous flow properties inside the treatment chamber and to reduce local temperature peaks, therefore increasing treatment homogeneity. This was accomplished by a divided inlet into the chamber, consequently generating a swirling flow (vortex). The influence of inlet angles on treatment homogeneity was studied (final values: radial angle α = 61°; axial angle β = 98°), using computational fluid dynamics (CFD). For the final design, the vorticity, i.e., the intensity of the fluid rotation, was the lowest of the investigated values in the first treatment zone (1002.55 1/s), but could be maintained for the longest distance, therefore providing an increased mixing and most homogeneous treatment conditions. The new design was experimentally compared to a conventional co-linear setup, taking into account inactivation efficacy of Microbacterium lacticum as well as retention of heat-sensitive alkaline phosphatase (ALP). Results showed an increase in M. lacticum inactivation (maximum Δlog of 1.8 at pH 7 and 1.1 at pH 4) by the vortex configuration and more homogeneous treatment conditions, as visible by the simulated temperature fields. Therefore, the new setup can contribute to optimize PEF treatment conditions and to further extend PEF applications to currently challenging products.
Collapse
Affiliation(s)
- Felix Schottroff
- Institute of Food Technology, Department of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Justus Knappert
- Institute of Food Technology and Food Chemistry, Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin, Berlin, Germany
| | - Pauline Eppmann
- Institute of Food Technology and Food Chemistry, Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin, Berlin, Germany
| | - Anna Krottenthaler
- Institute of Food Technology, Department of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Tobias Horneber
- Institute of Food Technology and Food Chemistry, Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin, Berlin, Germany
| | - Christopher McHardy
- Institute of Food Technology and Food Chemistry, Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin, Berlin, Germany
| | - Cornelia Rauh
- Institute of Food Technology and Food Chemistry, Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin, Berlin, Germany
| | - Henry Jaeger
- Institute of Food Technology, Department of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
10
|
Knappert J, McHardy C, Rauh C. Kinetic Modeling and Numerical Simulation as Tools to Scale Microalgae Cell Membrane Permeabilization by Means of Pulsed Electric Fields (PEF) From Lab to Pilot Plants. Front Bioeng Biotechnol 2020; 8:209. [PMID: 32269988 PMCID: PMC7109448 DOI: 10.3389/fbioe.2020.00209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/03/2020] [Indexed: 11/26/2022] Open
Abstract
Pulsed Electric Fields (PEF) is a promising technology for the gentle and energy efficient disruption of microalgae cells such as Chlorella vulgaris. The technology is based on the exposure of cells to a high voltage electric field, which causes the permeabilization of the cell membrane. Due to the dependency of the effective treatment conditions on the specific design of the treatment chamber, it is difficult to compare data obtained in different chambers or at different scales, e.g., lab or pilot scale. This problem can be overcome by the help of numerical simulation since it enables the accessibility to the local treatment conditions (electric field strength, temperature, flow field) inside a treatment chamber. To date, no kinetic models for the cell membrane permeabilization of microalgae are available what makes it difficult to decide if and in what extent local treatment conditions have an impact on the permeabilization. Therefore, a kinetic model for the perforation of microalgae cells of the species Chlorella vulgaris was developed in the present work. The model describes the fraction of perforated cells as a function of the electric field strength, the temperature and the treatment time by using data which were obtained in a milliliter scale batchwise treatment chamber. Thereafter, the model was implemented in a CFD simulation of a pilot-scale continuous treatment chamber with colinear electrode arrangement. The numerical results were compared to experimental measurements of cell permeabilization in a similar continuous treatment chamber. The predicted values and the experimental data agree reasonably well what demonstrates the validity of the proposed model. Therefore, it can be applied to any possible treatment chamber geometry and can be used as a tool for scaling cell permeabilization of microalgae by means of PEF from lab to pilot scale. The present work provides the first contribution showing the applicability of kinetic modeling and numerical simulation for designing PEF processes for the purpose of biorefining microalgae biomass. This can help to develop new processes and to reduce the costs for the development of new treatment chamber designs.
Collapse
Affiliation(s)
- Justus Knappert
- Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin, Berlin, Germany
| | - Christopher McHardy
- Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin, Berlin, Germany
| | - Cornelia Rauh
- Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
11
|
Schottroff F, Johnson K, Johnson NB, Bédard MF, Jaeger H. Challenges and limitations for the decontamination of high solids protein solutions at neutral pH using pulsed electric fields. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109737] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Impact of a combined pulsed electric field (PEF) and enzymatic mash treatment on yield, fermentation behaviour and composition of white wine. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03427-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AbstractThe aim of this work was to study the combined application of a pulsed electric field (PEF) and an enzymatic treatment to white wine mash. The resulting impact of membrane permeabilisation by electroporation and pectin degradation by enzymes on fermentation behaviour and quality of white wine was assessed. The mash of two varieties, Traminer and Grüner Veltliner, was PEF treated (3 and 10 kJ/kg) using a continuous co-linear treatment chamber. Pectinases were added immediately afterwards and maceration was performed for 4 and 24 h. Various physico-chemical parameters were analysed at different stages of the production process and the impact of the combined treatment on volatile compounds such as esters and terpenes was analysed by gas chromatography–mass spectrometry and a sensory panel in the final white wine after bottling and storage. Regardless of the PEF treatment intensity, the variety and the maceration time, the release of juice was not significantly influenced. For Traminer, the fermentation time was reduced through the enhanced extraction of nitrogen from 322 to 359 mg/L due to PEF treatment (10 kJ/kg). The release of phenols which were localized in the pulp, were significantly more affected than phenols from the skin. Although the concentration of selective esters especially of the variety Traminer significantly increased, the sensory evaluation indicated no positive effect on the olfactory properties. Overall, the combination of PEF and enzyme pretreatment showed benefits in reducing the fermentation time and increasing the content of selective esters for Traminer.
Collapse
|
13
|
Buchmann L, Mathys A. Perspective on Pulsed Electric Field Treatment in the Bio-based Industry. Front Bioeng Biotechnol 2019; 7:265. [PMID: 31681745 PMCID: PMC6805697 DOI: 10.3389/fbioe.2019.00265] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/27/2019] [Indexed: 12/21/2022] Open
Abstract
The bio-based industry is urged to find solutions to meet the demands of a growing world population. In this context, increased resource efficiency is a major goal. Pulsed electric field (PEF) processing is a promising technological solution. Conventional PEF and the emerging area of nanosecond PEF (nsPEF) have been shown to induce various biological effects, with nsPEF inducing pronounced intracellular effects, which could provide solutions for currently faced challenges. Based on the flexibility and continuous operation of PEF and nsPEF processing, the technology can be integrated into many existing cultivation systems; its modularity provides an approach for inducing specific effects. Depending on the treatment conditions, selective inactivation, continuous extraction without impeding cell viability, as well as the stimulation of cell growth and/or cellular compound stimulation are potential applications in the bio-based industry. However, continuous treatment currently involves heterogeneous energy inputs. Increasing the homogeneity of PEF and nsPEF processing by considering the flow and electric field heterogeneity may allow for more targeted effects on biological cells, further increasing the potential of the technology for bio-based applications. We provide an overview of existing and potential applications of PEF and nsPEF and suggest that theoretical and practical analyses of flow and electric field heterogeneity may provide a basis for obtaining more targeted effects on biological cells and for further increasing the bio-based applications of the technology, which thereby could become a key technology for circular economy approaches in the future.
Collapse
Affiliation(s)
- Leandro Buchmann
- Laboratory of Sustainable Food Processing, Department of Health Sciences and Technology, Institute of Food Nutrition and Health, IFNH, ETH Zurich, Zurich, Switzerland
| | - Alexander Mathys
- Laboratory of Sustainable Food Processing, Department of Health Sciences and Technology, Institute of Food Nutrition and Health, IFNH, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Buchmann L, Bloch R, Mathys A. Comprehensive pulsed electric field (PEF) system analysis for microalgae processing. BIORESOURCE TECHNOLOGY 2018; 265:268-274. [PMID: 29906715 DOI: 10.1016/j.biortech.2018.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
Pulsed electric field (PEF) is an emerging nonthermal technique with promising applications in microalgae biorefinery concepts. In this work, the flow field in continuous PEF processing and its influencing factors were analyzed and energy input distributions in PEF treatment chambers were investigated. The results were obtained using an interdisciplinary approach that combined multiphysics simulations with ultrasonic Doppler velocity profiling (UVP) and rheological measurements of Arthrospira platensis suspensions as a case study for applications in the biobased industry. UVP enabled non-invasive validation of multiphysics simulations. A. platensis suspensions follow a non-Newtonian, shear-thinning behavior, and measurement data could be fitted with rheological functions, which were used as an input for fluid dynamics simulations. Within the present work, a comprehensive system characterization was achieved that will facilitate research in the field of PEF processing.
Collapse
Affiliation(s)
- Leandro Buchmann
- ETH Zurich, Institute of Food Nutrition and Health, Laboratory of Sustainable Food Processing, Schmelzbergstrasse 9, Zurich 8092, Switzerland
| | - Robin Bloch
- ETH Zurich, Institute of Food Nutrition and Health, Laboratory of Sustainable Food Processing, Schmelzbergstrasse 9, Zurich 8092, Switzerland
| | - Alexander Mathys
- ETH Zurich, Institute of Food Nutrition and Health, Laboratory of Sustainable Food Processing, Schmelzbergstrasse 9, Zurich 8092, Switzerland.
| |
Collapse
|
15
|
Kandušer M, Belič A, Čorović S, Škrjanc I. Modular Serial Flow Through device for pulsed electric field treatment of the liquid samples. Sci Rep 2017; 7:8115. [PMID: 28808315 PMCID: PMC5556104 DOI: 10.1038/s41598-017-08620-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 07/11/2017] [Indexed: 11/25/2022] Open
Abstract
In biotechnology, medicine, and food processing, simple and reliable methods for cell membrane permeabilization are required for drug/gene delivery into the cells or for the inactivation of undesired microorganisms. Pulsed electric field treatment is among the most promising methods enabling both aims. The drawback in current technology is controllable large volume operation. To address this challenge, we have developed an experimental setup for flow through electroporation with online regulation of the flow rate with feedback control. We have designed a modular serial flow-through co-linear chamber with a smooth inner surface, the uniform cross-section geometry through the majority of the system’s length, and the mesh in contact with the electrodes, which provides uniform electric field distribution and fluid velocity equilibration. The cylindrical cross-section of the chamber prevents arching at the active treatment region. We used mathematical modeling for the evaluation of electric field distribution and the flow profile in the active region. The system was tested for the inactivation of Escherichia coli. We compared two flow-through chambers and used a static chamber as a reference. The experiments were performed under identical experimental condition (product and similar process parameters). The data were analyzed in terms of inactivation efficiency and specific energy consumption.
Collapse
Affiliation(s)
- Maša Kandušer
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, SI-1000, Ljubljana, Slovenia
| | - Aleš Belič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, SI-1000, Ljubljana, Slovenia
| | - Selma Čorović
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, SI-1000, Ljubljana, Slovenia
| | - Igor Škrjanc
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
16
|
Raso J, Frey W, Ferrari G, Pataro G, Knorr D, Teissie J, Miklavčič D. Recommendations guidelines on the key information to be reported in studies of application of PEF technology in food and biotechnological processes. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.08.003] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Sastry SK. Toward a Philosophy and Theory of Volumetric Nonthermal Processing. J Food Sci 2016; 81:E1431-46. [DOI: 10.1111/1750-3841.13324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/02/2016] [Accepted: 03/31/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Sudhir K. Sastry
- Dept. of Food; Agricultural and Biological Engineering, the Ohio State Univ; 590 Woody Hayes Drive Columbus OH 43210 U.S.A
| |
Collapse
|
18
|
Zhang YK, Liu XH, Liu XW, Zha YF, Xu XL, Ren ZG, Jiang HC, Wang HC. Research advances in deriving renewable energy from biomass in wastewater treatment plants. RSC Adv 2016. [DOI: 10.1039/c6ra06868e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Anaerobic digestion (AD) can be used to derive renewable energy from biomass in wastewater treatment plants, and the produced biogas represents a valuable end-product that can greatly offset operation costs.
Collapse
Affiliation(s)
- Yuan-kai Zhang
- School of Environment & Natural Resource
- Renmin University of China
- Beijing 100872
- China
| | - Xiu-hong Liu
- School of Environment & Natural Resource
- Renmin University of China
- Beijing 100872
- China
| | - Xiao-wei Liu
- School of Environment & Natural Resource
- Renmin University of China
- Beijing 100872
- China
| | - Yi-fei Zha
- School of Environment & Natural Resource
- Renmin University of China
- Beijing 100872
- China
| | - Xiang-long Xu
- School of Environment & Natural Resource
- Renmin University of China
- Beijing 100872
- China
| | - Zheng-guang Ren
- School of Environment & Natural Resource
- Renmin University of China
- Beijing 100872
- China
| | - Hang-cheng Jiang
- School of Environment & Natural Resource
- Renmin University of China
- Beijing 100872
- China
| | - Hong-chen Wang
- School of Environment & Natural Resource
- Renmin University of China
- Beijing 100872
- China
| |
Collapse
|
19
|
Kotnik T, Frey W, Sack M, Haberl Meglič S, Peterka M, Miklavčič D. Electroporation-based applications in biotechnology. Trends Biotechnol 2015; 33:480-8. [PMID: 26116227 DOI: 10.1016/j.tibtech.2015.06.002] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/22/2015] [Accepted: 06/01/2015] [Indexed: 02/06/2023]
Abstract
Electroporation is already an established technique in several areas of medicine, but many of its biotechnological applications have only started to emerge; we review here some of the most promising. We outline electroporation as a phenomenon and then proceed to applications, first outlining the best established - the use of reversible electroporation for heritable genetic modification of microorganisms (electrotransformation), and then explore recent advances in applying electroporation for inactivation of microorganisms, extraction of biomolecules, and fast drying of biomass. Although these applications often aim to upscale to the industrial and/or clinical level, we also outline some important chip-scale applications of electroporation. We conclude our review with a discussion of the main challenges and future perspectives.
Collapse
Affiliation(s)
- Tadej Kotnik
- Department of Biomedical Engineering, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Wolfgang Frey
- Institute for Pulsed Power and Microwave Technology, Karlsruhe Institute of Technology, Hermann-v-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Martin Sack
- Institute for Pulsed Power and Microwave Technology, Karlsruhe Institute of Technology, Hermann-v-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Saša Haberl Meglič
- Department of Biomedical Engineering, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Matjaž Peterka
- Instrumentation and Process Control, Centre of Excellence for Biosensors, Tovarniška cesta 26, 5270 Ajdovščina, Slovenia
| | - Damijan Miklavčič
- Department of Biomedical Engineering, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia.
| |
Collapse
|
20
|
Reineke K, Schottroff F, Meneses N, Knorr D. Sterilization of liquid foods by pulsed electric fields-an innovative ultra-high temperature process. Front Microbiol 2015; 6:400. [PMID: 25999930 PMCID: PMC4422003 DOI: 10.3389/fmicb.2015.00400] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/17/2015] [Indexed: 12/05/2022] Open
Abstract
The intention of this study was to investigate the inactivation of endospores by a combined thermal and pulsed electric field (PEF) treatment. Therefore, self-cultivated spores of Bacillus subtilis and commercial Geobacillus stearothermophilus spores with certified heat resistance were utilized. Spores of both strains were suspended in saline water (5.3 mS cm−1), skim milk (0.3% fat; 5.3 mS cm−1) and fresh prepared carrot juice (7.73 mS cm−1). The combination of moderate preheating (70–90°C) and an insulated PEF-chamber, combined with a holding tube (65 cm) and a heat exchanger for cooling, enabled a rapid heat up to 105–140°C (measured above the PEF chamber) within 92.2–368.9 μs. To compare the PEF process with a pure thermal inactivation, each spore suspension was heat treated in thin glass capillaries and D-values from 90 to 130°C and its corresponding z-values were calculated. For a comparison of the inactivation data, F-values for the temperature fields of both processes were calculated by using computational fluid dynamics (CFD). A preheating of saline water to 70°C with a flow rate of 5 l h−1, a frequency of 150 Hz and an energy input of 226.5 kJ kg−1, resulted in a measured outlet temperature of 117°C and a 4.67 log10 inactivation of B. subtilis. The thermal process with identical F-value caused only a 3.71 log10 inactivation. This synergism of moderate preheating and PEF was even more pronounced for G. stearothermophilus spores in saline water. A preheating to 95°C and an energy input of 144 kJ kg−1 resulted in an outlet temperature of 126°C and a 3.28 log10 inactivation, whereas nearly no inactivation (0.2 log10) was achieved during the thermal treatment. Hence, the PEF technology was evaluated as an alternative ultra-high temperature process. However, for an industrial scale application of this process for sterilization, optimization of the treatment chamber design is needed to reduce the occurring inhomogeneous temperature fields.
Collapse
Affiliation(s)
- Kai Reineke
- Quality and Safety of Food and Feed, Leibniz Institute for Agricultural Engineering Potsdam, Germany ; Department of Food Biotechnology and Food Process Engineering, Technische Universitaet Berlin Berlin, Germany
| | - Felix Schottroff
- Department of Food Biotechnology and Food Process Engineering, Technische Universitaet Berlin Berlin, Germany
| | | | - Dietrich Knorr
- Department of Food Biotechnology and Food Process Engineering, Technische Universitaet Berlin Berlin, Germany
| |
Collapse
|
21
|
Upscaling from benchtop processing to industrial scale production: More factors to be considered for pulsed electric field food processing. J FOOD ENG 2015. [DOI: 10.1016/j.jfoodeng.2014.08.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Knoerzer K, Buckow R, Trujillo FJ, Juliano P. Multiphysics Simulation of Innovative Food Processing Technologies. FOOD ENGINEERING REVIEWS 2014. [DOI: 10.1007/s12393-014-9098-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Liquid food pasteurization by pulsed electric fields: dimensionless analysis via Sherwood number for a comprehensive understanding. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2268-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Saldaña G, Álvarez I, Condón S, Raso J. Microbiological Aspects Related to the Feasibility of PEF Technology for Food Pasteurization. Crit Rev Food Sci Nutr 2014; 54:1415-26. [DOI: 10.1080/10408398.2011.638995] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Meneses N, Saldaña G, Jaeger H, Raso J, Álvarez I, Cebrián G, Knorr D. Modelling of polyphenoloxidase inactivation by pulsed electric fields considering coupled effects of temperature and electric field. INNOV FOOD SCI EMERG 2013. [DOI: 10.1016/j.ifset.2012.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Kaluri RS, Basak T. Role of distributed heating on enhancement of thermal mixing for liquid food processing with heat flow visualization method. INNOV FOOD SCI EMERG 2013. [DOI: 10.1016/j.ifset.2012.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Puértolas E, Álvarez I, Raso J, Martínez de Marañón I. Aplicación industrial de los pulsos eléctricos de alto voltaje para la pasteurización de alimentos: revisión de su viabilidad técnica y comercial. CYTA - JOURNAL OF FOOD 2013. [DOI: 10.1080/19476337.2012.693542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Jaeger H, Schulz M, Lu P, Knorr D. Adjustment of milling, mash electroporation and pressing for the development of a PEF assisted juice production in industrial scale. INNOV FOOD SCI EMERG 2012. [DOI: 10.1016/j.ifset.2011.11.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Meneses N, Jaeger H, Knorr D. Minimization of Thermal Impact by Application of Electrode Cooling in a Co-linear PEF Treatment Chamber. J Food Sci 2011; 76:E536-43. [DOI: 10.1111/j.1750-3841.2011.02368.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|