1
|
Mock MB, Summers RM. Microbial metabolism of caffeine and potential applications in bioremediation. J Appl Microbiol 2024; 135:lxae080. [PMID: 38549434 DOI: 10.1093/jambio/lxae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
With increasing global consumption of caffeine-rich products, such as coffee, tea, and energy drinks, there is also an increase in urban and processing waste full of residual caffeine with limited disposal options. This waste caffeine has been found to leach into the surrounding environment where it poses a threat to microorganisms, insects, small animals, and entire ecosystems. Growing interest in harnessing this environmental contaminant has led to the discovery of 79 bacterial strains, eight yeast strains, and 32 fungal strains capable of metabolizing caffeine by N-demethylation and/or C-8 oxidation. Recently observed promiscuity of caffeine-degrading enzymes in vivo has opened up the possibility of engineering bacterial strains capable of producing a wide variety of caffeine derivatives from a renewable resource. These engineered strains can be used to reduce the negative environmental impact of leached caffeine-rich waste through bioremediation efforts supplemented by our increasing understanding of new techniques such as cell immobilization. Here, we compile all of the known caffeine-degrading microbial strains, discuss their metabolism and related enzymology, and investigate their potential application in bioremediation.
Collapse
Affiliation(s)
- Meredith B Mock
- Department of Chemical and Biological Engineering, The University of Alabama, Box 870203, Tuscaloosa, AL 35487, United States
| | - Ryan M Summers
- Department of Chemical and Biological Engineering, The University of Alabama, Box 870203, Tuscaloosa, AL 35487, United States
| |
Collapse
|
2
|
Shi Y, Wen T, Zhao F, Hu J. Bacteriostasis of nisin against planktonic and biofilm bacteria: Its mechanism and application. J Food Sci 2024; 89:1894-1916. [PMID: 38477236 DOI: 10.1111/1750-3841.17001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/27/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Food safety incidents caused by bacterial contamination have always been one of the public safety issues of social concern. Planktonic cells, viable but non-culturable (VBNC) cells, and biofilm cells of bacteria can coexist in food or food processing, posing more serious challenges to public health and safety by increasing bacterial survival and difficulty in detection. As a non-toxic, no side effect, and highly effective bacteriostatic substance, nisin has received wide attention from researchers. In this review, we summarized the species and biosynthesis of nisin, the effects of nisin alone or in combination with other treatments on planktonic and biofilm cells, and its applications in the fields of food, feed, and medicine by consulting numerous studies. Meanwhile, the mechanism of nisin on planktonic and biofilm cells was proposed based on existing researches. Nisin not only has antibacterial activity against most G+ bacteria but also exhibits a bacteriostatic effect on G- bacteria when combined with other antibacterial treatments. In addition to planktonic cells, nisin also has significant effects on bacterial cells in biofilms by changing the thickness, density, and composition of biofilms. Based on the three action processes of nisin on biofilms, we summarized the changes of bacteria in biofilms, including the causes of bacterial death and the formation of the VBNC state. We consider that research on the relationship between nisin and VBNC state should be strengthened.
Collapse
Affiliation(s)
- Ying Shi
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| | - Tao Wen
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| | - Feng Zhao
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| | - Jia Hu
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| |
Collapse
|
3
|
Li P, Mei J, Xie J. The regulation of carbon dioxide on food microorganisms: A review. Food Res Int 2023; 172:113170. [PMID: 37689923 DOI: 10.1016/j.foodres.2023.113170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 09/11/2023]
Abstract
This review presents a survey of two extremely important technologies about CO2 with the effectiveness of controlling microorganisms - atmospheric pressure CO2-based modified atmosphere packaging (MAP) and high pressure CO2 non-thermal pasteurization (HPCD). CO2-based MAP is effectively in delaying the lag and logarithmic phases of microorganisms by replacing the surrounding air, while HPCD achieved sterilization by subjecting food to either subcritical or supercritical CO2 for some time in a continuous, batch or semi-batch way. In addition to the advantages of healthy, eco-friendly, quality-preserving, effective characteristic, some challenges such as the high drip loss and packaging collapse associated with higher concentration of CO2, the fuzzy mechanisms of oxidative stress, the unproven specific metabolic pathways and biomarkers, etc., in CO2-based MAP, and the unavoidable extraction of bioactive compounds, the challenging application in solid foods with higher efficiency, the difficult balance between optimal sterilization and optimal food quality, etc., in HPCD still need more efforts to overcome. The action mechanism of CO2 on microorganisms, researches in recent years, problems and future perspectives are summarized. When dissolved in solution medium or cellular fluids, CO2 can form carbonic acid (H2CO3), and H2CO3 can further dissociate into bicarbonate ions (HCO3-), carbonate (CO32-) and hydrogen cations (H+) ionic species following series equilibria. The action mode of CO2 on microorganisms may be relevant to changes in intracellular pH, alteration of proteins, enzyme structure and function, alteration of cell membrane function and fluidity, and so on. Nevertheless, the effects of CO2 on microbial biofilms, energy metabolism, protein and gene expression also need to be explored more extensively and deeply to further understand the action mechanism of CO2 on microorganisms.
Collapse
Affiliation(s)
- Peiyun Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China; Collaborative Innovation Center of Seafood Deep Processing, Ministry of Education, Dalian 116034, China.
| |
Collapse
|
4
|
Yang D, Li R, Dong P, Rao L, Wang Y, Liao X. Influence of pressurization rate and mode on cell damage of Escherichia coli and Staphyloccocus aureus by high hydrostatic pressure. Front Microbiol 2023; 14:1108194. [PMID: 36937272 PMCID: PMC10018152 DOI: 10.3389/fmicb.2023.1108194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
As a non-thermal technology, high hydrostatic pressure (HHP) has been widely investigated for inactivating microorganisms in food. Few studies have been presented on the pressurization/depressurization rate and mode of microbial inactivation. In this study, effect of pressurization rate and mode on Escherichia coli and Staphylococcus aureus cell damage during HHP treatment was investigated. The results showed that fast pressurization + linear mode (FL) treatment has the best bactericidal effect on E. coli and S. aureus, followed by fast pressurization + stepwise mode (FS) and slow pressurization + stepwise mode (SS) treatments. FL treatment caused more morphological damage to the cell wall, cell membrane, and cytoplasmic components compared with FS and SS treatment detected by SEM and TEM. Additionally, the damage to membrane permeability of them was also enhanced after FL treatment. Therefore, our results indicated that FL treatment could be applied to enhance the bactericidal effect of HHP on bacteria by increasing the damage to cell morphological structure and membrane integrity.
Collapse
Affiliation(s)
- Dong Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
| | - Renjie Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
| | - Peng Dong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
- *Correspondence: Yongtao Wang,
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
- Xiaojun Liao,
| |
Collapse
|
5
|
İzgördü ÖK, Darcan C, Kariptaş E. Overview of VBNC, a survival strategy for microorganisms. 3 Biotech 2022; 12:307. [PMID: 36276476 PMCID: PMC9526772 DOI: 10.1007/s13205-022-03371-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/20/2022] [Indexed: 11/01/2022] Open
Abstract
Microorganisms are exposed to a wide variety of stress factors in their natural environments. Under that stressful conditions, they move into a viable but nonculturable (VBNC) state to survive and maintain the vitality. At VBNC state, microorganisms cannot be detected by traditional laboratory methods, but they can be revived under appropriate conditions. Therefore, VBNC organisms cause serious food safety and public health problems. To date, it has been determined that more than 100 microorganism species have entered the VBNC state through many chemical and physical factors. During the last four decades, dating from the initial detection of the VBNC condition, new approaches have been developed for the induction, detection, molecular mechanisms, and resuscitation of VBNC cells. This review evaluates the current data of recent years on the inducing conditions and detection methods of the VBNC state, including with microorganisms on the VBNC state, their virulence, pathogenicity, and molecular mechanisms.
Collapse
Affiliation(s)
- Özge Kaygusuz İzgördü
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Cihan Darcan
- Department of Molecular Biology and Genetics, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Ergin Kariptaş
- Department of Microbiology, Faculty of Medicine, Samsun University, Samsun, Turkey
| |
Collapse
|
6
|
Ma T, Wang J, Lan T, Bao S, Zhao Q, Sun X, Liu X. How to comprehensively improve juice quality: a review of the impacts of sterilization technology on the overall quality of fruit and vegetable juices in 2010-2021, an updated overview and current issues. Crit Rev Food Sci Nutr 2022; 64:2197-2247. [PMID: 36106453 DOI: 10.1080/10408398.2022.2121806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fruit and vegetable juices (FVJ) are rich in nutrients, so they easily breed bacteria, which cause microbial pollution and rapid deterioration of their quality and safety. Sterilization is an important operation in FVJ processing. However, regardless of whether thermal sterilization or non-thermal sterilization is used, the effect and its impact on the overall quality of FVJ are strongly dependent on the processing parameters, microbial species, and FVJ matrix. Therefore, for different types of FVJ, an understanding of the impacts that different sterilization technologies have on the overall quality of the juice is important in designing and optimizing technical parameters to produce value-added products. This article provides an overview of the application of thermal and non-thermal technique in the field of FVJ processing over the past 10 years. The operating principle and effects of various technologies on the inactivation of microorganisms and enzymes, nutritional and functional characteristics, physicochemical properties, and sensory quality of a wide range of FVJ are comprehensively discussed. The application of different combinations of hurdle technology in the field of FVJ sterilization processing are also discussed in detail. Additionally, the advantages, limitations, and current application prospects of different sterilization technologies are summarized.
Collapse
Affiliation(s)
- Tingting Ma
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Jiaqi Wang
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Tian Lan
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Shihan Bao
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Qinyu Zhao
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Xiangyu Sun
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Xuebo Liu
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Niu L, Zhang Y, Jie M, Cheng Y, Xiang Q, Zhang Z, Bai Y. Synergetic effect of
petit
‐high pressure carbon dioxide combined with cinnamon (
Cinnamomum cassia
) essential oil against
Salmonella typhimurium. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Liyuan Niu
- College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou China
- Collaborative Innovation Center of Food Production and Safety Henan Province Zhengzhou China
| | - Yilin Zhang
- College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou China
| | - Mingsha Jie
- College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou China
- Collaborative Innovation Center of Food Production and Safety Henan Province Zhengzhou China
| | - Yingxin Cheng
- College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou China
| | - Qisen Xiang
- College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou China
- Collaborative Innovation Center of Food Production and Safety Henan Province Zhengzhou China
| | - Zhijian Zhang
- College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou China
- Collaborative Innovation Center of Food Production and Safety Henan Province Zhengzhou China
| | - Yanhong Bai
- College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou China
- Collaborative Innovation Center of Food Production and Safety Henan Province Zhengzhou China
| |
Collapse
|
8
|
Hart A, Anumudu C, Onyeaka H, Miri T. Application of supercritical fluid carbon dioxide in improving food shelf-life and safety by inactivating spores: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:417-428. [PMID: 35185167 PMCID: PMC8814202 DOI: 10.1007/s13197-021-05022-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 02/03/2023]
Abstract
Extending shelf-life of food, ensuring it is safe for consumers and meeting regulatory standards is the food industry's governing principle. Food safety is an essential aspect of food processing. Spores-forming microbes such as Bacillus spp. and Clostridium spp. are problematic in the food industry because of their ability to form endospores and survive processing conditions. Hence, their germination in food poses a threat to both shelf-life and safety of food. This paper reports on the current state of supercritical fluid carbon dioxide (SF-CO2) application in the inactivation of spores-forming microbes in food. Unlike high hydrostatic pressure and thermal processes which struggle to deactivate and destroy spores, and if they do, it impacts adversely on the food nutritional and quality attributes. This technique is viable to inactivate spores and maintain the foods structural and nutritional characteristics. The mechanisms of inactivation can be grouped into: (1) release of cellular content due to rupture of the cell wall, coat and cortex, and disruption of membranes, (2) degradation of proteins as a result of interaction with permeated and penetrated SF-CO2 and (3) deactivation of enzymatic activities. It was discovered that the synergistic effect of ultrasound another non-thermal technique or addition of co-solvent such as water, hydrogen peroxide and ethanol or antimicrobial peptide greatly enhanced inactivation of spores. This work harmonizes published perspectives on spores' inactivation mechanisms, and will help inform further research into the application of SF-CO2 in the sterilization of food products.
Collapse
Affiliation(s)
- Abarasi Hart
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Christian Anumudu
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
9
|
Anumudu C, Hart A, Miri T, Onyeaka H. Recent Advances in the Application of the Antimicrobial Peptide Nisin in the Inactivation of Spore-Forming Bacteria in Foods. Molecules 2021; 26:5552. [PMID: 34577022 PMCID: PMC8469619 DOI: 10.3390/molecules26185552] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
Conventional thermal and chemical treatments used in food preservation have come under scrutiny by consumers who demand minimally processed foods free from chemical agents but microbiologically safe. As a result, antimicrobial peptides (AMPs) such as bacteriocins and nisin that are ribosomally synthesised by bacteria, more prominently by the lactic acid bacteria (LAB) have appeared as a potent alternative due to their multiple biological activities. They represent a powerful strategy to prevent the development of spore-forming microorganisms in foods. Unlike thermal methods, they are natural without an adverse impact on food organoleptic and nutritional attributes. AMPs such as nisin and bacteriocins are generally effective in eliminating the vegetative forms of spore-forming bacteria compared to the more resilient spore forms. However, in combination with other non-thermal treatments, such as high pressure, supercritical carbon dioxide, electric pulses, a synergistic effect with AMPs such as nisin exists and has been proven to be effective in the inactivation of microbial spores through the disruption of the spore structure and prevention of spore outgrowth. The control of microbial spores in foods is essential in maintaining food safety and extension of shelf-life. Thus, exploration of the mechanisms of action of AMPs such as nisin is critical for their design and effective application in the food industry. This review harmonises information on the mechanisms of bacteria inactivation from published literature and the utilisation of AMPs in the control of microbial spores in food. It highlights future perspectives in research and application in food processing.
Collapse
Affiliation(s)
- Christian Anumudu
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (C.A.); (T.M.)
| | - Abarasi Hart
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK;
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (C.A.); (T.M.)
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (C.A.); (T.M.)
| |
Collapse
|
10
|
Takundwa BA, Bhagwat P, Pillai S, Ijabadeniyi OA. Antimicrobial efficacy of nisin, oregano and ultrasound against Escherichia coli O157:H7 and Listeria monocytogenes on lettuce. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Song Y, Lu Y, Bi X, Chen L, Liu L, Che Z. Inactivation of Staphylococcus aureus by the Combined Treatments of Ultrasound and Nisin in Nutrient Broth and Milk. EFOOD 2021. [DOI: 10.2991/efood.k.210708.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
12
|
|
13
|
Synergistic effects of shear stress, moderate electric field, and nisin for the inactivation of Escherichia coli K12 and Listeria innocua in clear apple juice. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107209] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Aras S, Kabir MN, Chowdhury S, Fouladkhah AC. Augmenting the Pressure-Based Pasteurization of Listeria monocytogenes by Synergism with Nisin and Mild Heat. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E563. [PMID: 31952339 PMCID: PMC7014409 DOI: 10.3390/ijerph17020563] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 01/21/2023]
Abstract
The current study investigated Listeria monocytogenes inactivation using mild heat with elevated hydrostatic pressure and nisin under buffered condition. A four-strain pathogen mixture was exposed to 0 (control) and up to 9 min of (1) 4 °C elevated pressure; (2) 4 °C elevated pressure and nisin; (3) 4 °C nisin; (4) heat at 40 °C; (5) 40 °C elevated pressure; (6) 40 °C elevated pressure and nisin; and (7) 40 °C nisin. Elevated hydrostatic pressure at 400 MPa (Hub880 Explorer, Pressure BioScience Inc., Easton, MA, USA) and nisin concentration of 5000 IU/mL were used in the trials. Analyses of variance were conducted, followed by Dunnett's- and Tukey-adjusted means separations. Under conditions of these experiments, nisin augmented (p < 0.05) decontamination efficacy of 40 °C heat and elevated hydrostatic pressure treatments, particularly at treatment interval of 3 min. This synergism with nisin faded away (p ≥ 0.05) as the treatment time for thermal, high-pressure, and thermal-assisted pressure processing increased. The results of our study, thus, exhibit that practitioners and stakeholders of pressure-based technologies could benefit from synergism of mild heat and nisin for short-term, high-pressure pasteurization treatments to achieve microbial safety and economic feasibility comparable to traditional heat-treated products.
Collapse
Affiliation(s)
- Sadiye Aras
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA; (S.A.); (M.N.K.); (S.C.)
| | - Md Niamul Kabir
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA; (S.A.); (M.N.K.); (S.C.)
| | - Shahid Chowdhury
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA; (S.A.); (M.N.K.); (S.C.)
| | - Aliyar Cyrus Fouladkhah
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA; (S.A.); (M.N.K.); (S.C.)
- Cooperative Extension Program, Tennessee State University, Nashville, TN 37209, USA
| |
Collapse
|
15
|
Berdejo D, Pagán E, García-Gonzalo D, Pagán R. Exploiting the synergism among physical and chemical processes for improving food safety. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2018.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Inactivation of Escherichia coli O157:H7 by High Hydrostatic Pressure Combined with Gas Packaging. Microorganisms 2019; 7:microorganisms7060154. [PMID: 31141917 PMCID: PMC6617376 DOI: 10.3390/microorganisms7060154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 11/16/2022] Open
Abstract
The inactivation of Escherichia coli O157:H7 (E. coli) in physiological saline and lotus roots by high hydrostatic pressure (HHP) in combination with CO2 or N2 was studied. Changes in the morphology, cellular structure, and membrane permeability of the cells in physiological saline after treatments were investigated using scanning electron microscopy, transmission electron microscopy, and flow cytometry, respectively. It was shown that after HHP treatments at 150–550 MPa, CO2-packed E. coli cells had higher inactivation than the N2-packed and vacuum-packed cells, and no significant difference was observed in the latter two groups. Further, both the morphology and intracellular structure of CO2-packed E.coli cells were strongly destroyed by high hydrostatic pressure. However, serious damage to the intracellular structures occurred in only the N2-packed E. coli cells. During HHP treatments, the presence of CO2 caused more disruptions in the membrane of E. coli cells than in the N2-packed and vacuum-packed cells. These results indicate that the combined treatment of HHP and CO2 had a strong synergistic bactericidal effect, whereas N2 did not have synergistic effects with HHP. Although these two combined treatments had different effects on the inactivation of E. coli cells, the inactivation mechanisms might be similar. During both treatments, E. coli cells were inactivated by cell damage induced to the cellular structure through the membrane components and the extracellular morphology, unlike the independent HHP treatment.
Collapse
|
17
|
Li J, Wang J, Zhao X, Wang W, Liu D, Chen S, Ye X, Ding T. Inactivation of
Staphylococcus aureus
and
Escherichia coli
in milk by different processing sequences of ultrasound and heat. J Food Saf 2018. [DOI: 10.1111/jfs.12614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiao Li
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou Zhejiang China
- Key Laboratory for Agro‐Products Postharvest Handling of Ministry of AgricultureZhejiang Key Laboratory for Agro‐Food Processing Hangzhou Zhejiang China
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University Qingdao Shandong China
| | - Xihong Zhao
- Key Laboratory for Green Chemical Process of Ministry of EducationSchool of Chemical Engineering and Pharmacy, Wuhan Institute of Technology Wuhan China
| | - Wenjun Wang
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou Zhejiang China
- Key Laboratory for Agro‐Products Postharvest Handling of Ministry of AgricultureZhejiang Key Laboratory for Agro‐Food Processing Hangzhou Zhejiang China
| | - Donghong Liu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou Zhejiang China
- Key Laboratory for Agro‐Products Postharvest Handling of Ministry of AgricultureZhejiang Key Laboratory for Agro‐Food Processing Hangzhou Zhejiang China
| | - Shiguo Chen
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou Zhejiang China
- Key Laboratory for Agro‐Products Postharvest Handling of Ministry of AgricultureZhejiang Key Laboratory for Agro‐Food Processing Hangzhou Zhejiang China
| | - Xingqian Ye
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou Zhejiang China
- Key Laboratory for Agro‐Products Postharvest Handling of Ministry of AgricultureZhejiang Key Laboratory for Agro‐Food Processing Hangzhou Zhejiang China
| | - Tian Ding
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou Zhejiang China
- Key Laboratory for Agro‐Products Postharvest Handling of Ministry of AgricultureZhejiang Key Laboratory for Agro‐Food Processing Hangzhou Zhejiang China
| |
Collapse
|
18
|
Bi X, Wang Y, Hu X, Liao X. Decreased resistance of sublethally injured Escherichia coli O157:H7 to salt, mild heat, nisin and acids induced by high pressure carbon dioxide. Int J Food Microbiol 2018; 269:137-143. [PMID: 29427854 DOI: 10.1016/j.ijfoodmicro.2018.01.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/28/2017] [Accepted: 01/30/2018] [Indexed: 11/18/2022]
Abstract
Resistance of sublethally injured cells (SICs) of Escherichia coli O157:H7 induced by high pressure carbon dioxide (HPCD) to salt, low temperature, mild heat, nisin, acids and low pHs was investigated in this study. The SICs of E. coli were obtained following HPCD at 5 MPa and 25 °C for 40-60 min or 5 MPa and 45 °C for 20 min. The untreated cells could survive normally while the HPCD-treated cells showed 2.87 log10 cycles' reduction on tryptic soy agar (TSA) with 3% NaCl. The counts of the untreated cells were not significantly changed during 5 h incubation at 4 °C or 40 min incubation at 45 °C, and the HPCD-treated cells were also not affected by 5 h incubation at 4 °C but showed 1.75 log10 cycles' reduction at 45 °C for 40 min. The antimicrobial nisin caused an extra 0.25-1.0 log10 cycles' reduction of the HPCD-treated cells while the untreated cells was not inactivated by nisin. Except for oxalic acid (OA), citric acid (CA), malic acid (MA), tartaric acid (TA), lactic acid (LA), acetic acid (AA) and hydrochloric acid (HCl) did not inactivate the untreated cells, but all these seven acids caused a 0.74-1.53 log10 cycles' reduction of HPCD-treated cells. These results indicated that HPCD-induced SICs had a decreased resistance to salt, mild heat, nisin and acids. Moreover, the recovery test was used to investigate the sensitivity of the SICs to different pHs. Results showed that the SICs could not recover below or equal to pH 4.0. These promising results would open up the possibility of exploring the combination of other technologies (eg. mild heat, nisin and acids) with HPCD as hurdle approaches to inactivate target pathogens in foods.
Collapse
Affiliation(s)
- Xiufang Bi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China; Sichuan Key Laboratory of Food Bio-technology, College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yongtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
| | - Xiaosong Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
| | - Xiaojun Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China.
| |
Collapse
|
19
|
Shi C, Zhao X, Meng R, Liu Z, Zhang G, Guo N. Synergistic antimicrobial effects of nisin and p-Anisaldehyde on Staphylococcus aureus in pasteurized milk. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.05.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Liao X, Xuan X, Li J, Suo Y, Liu D, Ye X, Chen S, Ding T. Bactericidal action of slightly acidic electrolyzed water against Escherichia coli and Staphylococcus aureus via multiple cell targets. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.03.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Rao L, Wang Y, Chen F, Liao X. The Synergistic Effect of High Pressure CO 2 and Nisin on Inactivation of Bacillus subtilis Spores in Aqueous Solutions. Front Microbiol 2016; 7:1507. [PMID: 27708639 PMCID: PMC5030830 DOI: 10.3389/fmicb.2016.01507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/08/2016] [Indexed: 12/25/2022] Open
Abstract
The inactivation effects of high pressure CO2 + nisin (simultaneous treatment of HPCD and nisin, HPCD + nisin), HPCD→nisin (HPCD was followed by nisin), and nisin→HPCD (nisin was followed by HPCD) treatments on Bacillus subtilis spores in aqueous solutions were compared. The spores were treated by HPCD at 6.5 or 20 MPa, 84–86°C and 0–30 min, and the concentration of nisin was 0.02%. Treated spores were examined for the viability, the permeability of inner membrane (IM) using flow cytometry method and pyridine-2, 6-dicarboxylic acid (DPA) release, and structural damage by transmission electron microscopy. A synergistic effect of HPCD + nisin treatment on inactivation of the spores was found, and the inactivation efficiency of the spores was HPCD + nisin > HPCD→nisin or nisin→HPCD. Moreover, HPCD + nisin caused higher IM permeability and DPA release of the spores than HPCD. A possible action mode of nisin-enhanced inactivation of the spores was suggested as that HPCD firstly damaged the coat and cortex of spores, and nisin penetrated into and acted on the IM of spores, which increased the damage to the IM of spores, and resulted in higher inactivation of the spores.
Collapse
Affiliation(s)
- Lei Rao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural UniversityBeijing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of AgricultureBeijing, China
| | - Yongtao Wang
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture Beijing, China
| | - Fang Chen
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture Beijing, China
| | - Xiaojun Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural UniversityBeijing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of AgricultureBeijing, China
| |
Collapse
|
22
|
Léonard L, Bouarab Chibane L, Ouled Bouhedda B, Degraeve P, Oulahal N. Recent Advances on Multi-Parameter Flow Cytometry to Characterize Antimicrobial Treatments. Front Microbiol 2016; 7:1225. [PMID: 27551279 PMCID: PMC4976717 DOI: 10.3389/fmicb.2016.01225] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/22/2016] [Indexed: 11/30/2022] Open
Abstract
The investigation on antimicrobial mechanisms is a challenging and crucial issue in the fields of food or clinical microbiology, as it constitutes a prerequisite to the development of new antimicrobial processes or compounds, as well as to anticipate phenomenon of microbial resistance. Nowadays it is accepted that a cells population exposed to a stress can cause the appearance of different cell populations and in particular sub-lethally compromised cells which could be defined as viable but non-culturable (VBNC). Recent advances on flow cytometry (FCM) and especially on multi-parameter flow cytometry (MP-FCM) provide the opportunity to obtain high-speed information at real time on damage at single-cell level. This review gathers MP-FCM methodologies based on individual and simultaneous staining of microbial cells employed to investigate their physiological state following different physical and chemical antimicrobial treatments. Special attention will be paid to recent studies exploiting the possibility to corroborate MP-FCM results with additional techniques (plate counting, microscopy, spectroscopy, molecular biology techniques, membrane modeling) in order to elucidate the antimicrobial mechanism of action of a given antimicrobial treatment or compound. The combination of MP-FCM methodologies with these additional methods is namely a promising and increasingly used approach to give further insight in differences in microbial sub-population evolutions in response to antimicrobial treatments.
Collapse
Affiliation(s)
- Lucie Léonard
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1 Bourg en Bresse, France
| | - Lynda Bouarab Chibane
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1 Bourg en Bresse, France
| | - Balkis Ouled Bouhedda
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1 Bourg en Bresse, France
| | - Pascal Degraeve
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1 Bourg en Bresse, France
| | - Nadia Oulahal
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1 Bourg en Bresse, France
| |
Collapse
|