1
|
Kumar Y, Marangon M, Mayr Marangon C. The Application of Non-Thermal Technologies for Wine Processing, Preservation, and Quality Enhancement. BEVERAGES 2023. [DOI: 10.3390/beverages9020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Recently, non-thermal wine processing technologies have been proposed as alternatives to conventional winemaking processes, mostly with the aims to improve wine quality, safety, and shelf-life. Winemakers typically rely on sulfites (SO2) to prevent wine oxidation and microbial spoilage, as these processes can negatively affect wine quality and aging potential. However, SO2 can trigger allergic reactions, asthma, and headaches in sensitive consumers, so limitations on their use are needed. In red winemaking, prolonged maceration on skins is required to extract enough phenolic compounds from the wine, which is time-consuming. Consequently, the wine industry is looking for new ways to lower SO2 levels, shorten maceration times, and extend shelf life while retaining wine quality. This review aggregates the information about the novel processing techniques proposed for winemaking, such as high-pressure processing, pulsed electric field, ultrasound, microwave, and irradiation. In general, non-thermal processing techniques have been shown to lead to improvements in wine color characteristics (phenolic and anthocyanin content), wine stability, and wine sensory properties while reducing the need for SO2 additions, shortening the maceration time, and lowering the microbial load, thereby improving the overall quality, safety, and shelf life of the wines.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy
| | - Matteo Marangon
- Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Via XXVIII Aprile, 14, 31015 Conegliano, Italy
| | - Christine Mayr Marangon
- Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy
| |
Collapse
|
2
|
The Impact of Compounds Extracted from Wood on the Quality of Alcoholic Beverages. Molecules 2023; 28:molecules28020620. [PMID: 36677678 PMCID: PMC9866382 DOI: 10.3390/molecules28020620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
The production of some alcoholic beverages very often requires the use of wood from various tree species to improve the quality parameters (smell, taste, and color) of the drink. The review discusses the types of wood used in the production of wines, beers, and flavored vodkas. Changes occurring in wood during the process of toasting barrels or wood chips are described. The compounds derived from wood that shape the aroma, taste, and color of alcoholic beverages are presented. Depending on their origin, they were classified into compounds naturally occurring in wood and those formed as a result of the thermal treatment of wood. Next, the influence of the presence of wood on the quality of alcoholic beverages was described, with particular emphasis on wine, beer, whisky, and brandy. The final part of the article presents innovative techniques using wood to impart qualitative features to alcoholic beverages.
Collapse
|
3
|
Current Technologies to Accelerate the Aging Process of Alcoholic Beverages: A Review. BEVERAGES 2022. [DOI: 10.3390/beverages8040065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aging process contributes to the sensory evolution of alcoholic beverages, producing changes in the color and flavor of the final product. Traditionally, aging has occurred by storing beverages in wooden barrels for several months or years. To meet the demand for aged beverages, there is a need for large storage areas, a large number of wooden barrels, and, consequently, large volumes of stored product. Evaporation losses can also occur. In addition to the reactions of the beverage itself, there is also a transfer of wood compounds to the drink, which is later modified by successive oxidation reactions. This study addresses the alternative methods for accelerating the aging stage of beverages. These include the use of wood fragments, ultrasound, micro-oxygenation, pulsed electric field, high hydrostatic pressure, and microwave and gamma irradiation. These methods can be applied to optimize the process of extracting wood compounds, promote free radical formation, reduce oxidation reaction time, and accelerate yeast autolysis time. This study provides examples of some of the aforementioned methods. These technologies add value to the aging process, since they contribute to the reduction of production costs and, consequently, can increase commercial competitiveness.
Collapse
|
4
|
Cao Z, Li Y, Yu C, Li S, Zhang X, Tian Y. Effect of high hydrostatic pressure on the quality of red raspberry wine. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhixiang Cao
- College of Food Science and Technology Hebei Agricultural University Hebei China
| | - Yuxin Li
- College of Food Science and Technology Shanxi Agricultural University Shanxi China
| | - Chenchen Yu
- College of Food Science and Technology Hebei Agricultural University Hebei China
| | - Shengyun Li
- College of Food Science and Technology Hebei Agricultural University Hebei China
| | - Xuemei Zhang
- College of Food Science and Technology Hebei Agricultural University Hebei China
| | - Yiling Tian
- College of Food Science and Technology Hebei Agricultural University Hebei China
| |
Collapse
|
5
|
Ma T, Wang J, Wang H, Zhao Q, Zhang F, Ge Q, Li C, Gamboa GG, Fang Y, Sun X. Wine aging and artificial simulated wine aging: Technologies, applications, challenges, and perspectives. Food Res Int 2022; 153:110953. [DOI: 10.1016/j.foodres.2022.110953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/25/2022]
|
6
|
Dey G, Ghosh A, Tangirala RK. “Technological convergence” of preventive nutrition with non‐thermal processing. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gargi Dey
- School of Biotechnology Kalinga Institute of Industrial Technology Patia, Bhubaneswar, Odisha India
- GUT LEBEN INC. San Diego California USA
| | - Annesha Ghosh
- School of Biotechnology Kalinga Institute of Industrial Technology Patia, Bhubaneswar, Odisha India
| | - Rajendra K Tangirala
- GUT LEBEN INC. San Diego California USA
- Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden
| |
Collapse
|
7
|
Liu X, Le Bourvellec C, Guyot S, Renard CMGC. Reactivity of flavanols: Their fate in physical food processing and recent advances in their analysis by depolymerization. Compr Rev Food Sci Food Saf 2021; 20:4841-4880. [PMID: 34288366 DOI: 10.1111/1541-4337.12797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/22/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Flavanols, a subgroup of polyphenols, are secondary metabolites with antioxidant properties naturally produced in various plants (e.g., green tea, cocoa, grapes, and apples); they are a major polyphenol class in human foods and beverages, and have recognized effect on maintaining human health. Therefore, it is necessary to evaluate their changes (i.e., oxidation, polymerization, degradation, and epimerization) during various physical processing (i.e., heating, drying, mechanical shearing, high-pressure, ultrasound, and radiation) to improve the nutritional value of food products. However, the roles of flavanols, in particular for their polymerized forms, are often underestimated, for a large part because of analytical challenges: they are difficult to extract quantitatively, and their quantification demands chemical reactions. This review examines the existing data on the effects of different physical processing techniques on the content of flavanols and highlights the changes in epimerization and degree of polymerization, as well as some of the latest acidolysis methods for proanthocyanidin characterization and quantification. More and more evidence show that physical processing can affect content but also modify the structure of flavanols by promoting a series of internal reactions. The most important reactivity of flavanols in processing includes oxidative coupling and rearrangements, chain cleavage, structural rearrangements (e.g., polymerization, degradation, and epimerization), and addition to other macromolecules, that is, proteins and polysaccharides. Some acidolysis methods for the analysis of polymeric proanthocyanidins have been updated, which has contributed to complete analysis of proanthocyanidin structures in particular regarding their proportion of A-type proanthocyanidins and their degree of polymerization in various plants. However, future research is also needed to better extract and characterize high-polymer proanthocyanidins, whether in their native or modified forms.
Collapse
Affiliation(s)
- Xuwei Liu
- INRAE, Avignon University, UMR408 SQPOV, Avignon, France
| | | | - Sylvain Guyot
- INRAE, UR1268 BIA, Team Polyphenol, Reactivity & Processing (PRP), Le Rheu, France
| | - Catherine M G C Renard
- INRAE, Avignon University, UMR408 SQPOV, Avignon, France.,INRAE, TRANSFORM, Nantes, France
| |
Collapse
|
8
|
Valdés ME, Ramírez R, Martínez-Cañas MA, Frutos-Puerto S, Moreno D. Accelerating Aging of White and Red Wines by the Application of Hydrostatic High Pressure and Maceration with Holm Oak ( Quercus ilex) Chips. Influence on Physicochemical and Sensory Characteristics. Foods 2021; 10:899. [PMID: 33921857 PMCID: PMC8072562 DOI: 10.3390/foods10040899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The use of holm oak (Quercus ilex) chips as a potential alternative wood and the application of hydrostatic high pressure (HHP) as an alternative technique to accelerate the release to the wine of wood-related compounds within a short processing time were evaluated. METHODS Five treatments were investigated: (i) bottling without any treatment (B); (ii) and (iii) bottling after maceration (5 g/L) of holm oak chips with HHP treatments (400 MPa, 5 and 30 min) (HHP5, HHP30); (iv) bottling after maceration during 45 days with chips (M), and; (v) maceration in tanks without chips (T). The effects of treatments on general parameters, polyphenols, color, and sensorial characteristics of red and white wines were investigated over 180 days. RESULTS HHP5, HHP30, and M increased the polyphenols content, thus modified the chromatic characteristics regarding B and M treatments of white wines, also the tasters differentiated HHP5, HHP30, and M from B and T. However, these effects were not observed in red wines. Thus, the effect of the wood depends on the type of wine in which it is used. CONCLUSIONS This research contributes to better knowledge about these chips as a new alternative wood species and the use of HHP as a useful technology to accelerate the aging of wines.
Collapse
Affiliation(s)
- María Esperanza Valdés
- Center for Scientific and Technological Research of Extremadura (CICYTEX), Food and Agriculture, Technology Institute of Extremadura (INTAEX), Avenue Adolfo Suárez s/n, 06071 Badajoz, Spain; (R.R.); (M.A.M.-C.); (S.F.-P.); (D.M.)
| | - Rosario Ramírez
- Center for Scientific and Technological Research of Extremadura (CICYTEX), Food and Agriculture, Technology Institute of Extremadura (INTAEX), Avenue Adolfo Suárez s/n, 06071 Badajoz, Spain; (R.R.); (M.A.M.-C.); (S.F.-P.); (D.M.)
| | - Manuel Alejandro Martínez-Cañas
- Center for Scientific and Technological Research of Extremadura (CICYTEX), Food and Agriculture, Technology Institute of Extremadura (INTAEX), Avenue Adolfo Suárez s/n, 06071 Badajoz, Spain; (R.R.); (M.A.M.-C.); (S.F.-P.); (D.M.)
- Center for Scientific and Technological Research of Extremadura (CICYTEX), Institute of Cork, Wood and Charcoal (ICMC-IPROCOR), 06800 Mérida, Spain
| | - Samuel Frutos-Puerto
- Center for Scientific and Technological Research of Extremadura (CICYTEX), Food and Agriculture, Technology Institute of Extremadura (INTAEX), Avenue Adolfo Suárez s/n, 06071 Badajoz, Spain; (R.R.); (M.A.M.-C.); (S.F.-P.); (D.M.)
| | - Daniel Moreno
- Center for Scientific and Technological Research of Extremadura (CICYTEX), Food and Agriculture, Technology Institute of Extremadura (INTAEX), Avenue Adolfo Suárez s/n, 06071 Badajoz, Spain; (R.R.); (M.A.M.-C.); (S.F.-P.); (D.M.)
| |
Collapse
|
9
|
Combination of enzyme-assisted extraction and high hydrostatic pressure for phenolic compounds recovery from grape pomace. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110128] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Lukić K, Ćurko N, Tomašević M, Kovačević Ganić K. Phenolic and Aroma Changes of Red and White Wines during Aging Induced by High Hydrostatic Pressure. Foods 2020; 9:E1034. [PMID: 32752199 PMCID: PMC7466237 DOI: 10.3390/foods9081034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to investigate use of high hydrostatic pressure (HHP) along with different antioxidants (glutathione and SO2) as an alternative method for wine preservation and production of low-SO2 wines. In the first phase of the study, low-SO2, young red and white wines were pressurized at three pressure levels (200, 400 and 600 MPa) for 5, 15 and 25 min at room temperature, and analyzed immediately after treatments. Additionally, for the wine aging experiment, red and white wines with standard-SO2, low-SO2+glutathione and low-SO2 content were treated with HHP treatment (200 MPa/5 min) and stored for 12 months in bottles. Color parameters, phenolic and aroma compounds were determined. The sensory evaluation was also conducted. HHP showed very slight, but statistically significant changes in the chemical composition of both red and white wine right after the treatment, and the main variations observed were related to the different pressures applied. Furthermore, during aging, most of the differences observed in chemical composition of pressurized wines, both red and white, were statistically significant, and greater in wines with a lower content of antioxidants. However, after 12 months of aging, some differences between unpressurized and pressurized samples with standard SO2 content were lost, primarily in aroma compounds for red wine and in color and phenolics for white wine. Additionally, similar values were obtained for mentioned characteristics of red and white wines in pressurized samples with standard SO2 and low SO2+glutathione, indicating that HHP in combination with glutathione and lower doses of SO2 might potentially preserve wine. The sensory analysis confirmed less pronounced changes in the sensory attributes of pressurized wines with higher concentration of antioxidants. Furthermore, the treatments applied had a slightly higher effect on the sensory properties of white wine.
Collapse
Affiliation(s)
| | | | | | - Karin Kovačević Ganić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (K.L.); (N.Ć.); (M.T.)
| |
Collapse
|
11
|
Christofi S, Malliaris D, Katsaros G, Panagou E, Kallithraka S. Limit SO2 content of wines by applying High Hydrostatic Pressure. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Martín J, Asuero AG. High hydrostatic pressure for recovery of anthocyanins: effects, performance, and applications. SEPARATION & PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1632897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Julia Martín
- Department of Analytical Chemistry. Escuela Politécnica Superior. University of Seville, 41011, Seville, Spain
| | - Agustin G. Asuero
- Department of Analytical Chemistry. Faculty of Pharmacy. University of Seville, 41012, Seville, Spain
| |
Collapse
|
13
|
Lukić K, Vukušić T, Tomašević M, Ćurko N, Gracin L, Kovačević Ganić K. The impact of high voltage electrical discharge plasma on the chromatic characteristics and phenolic composition of red and white wines. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2017.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Lisanti MT, Blaiotta G, Nioi C, Moio L. Alternative Methods to SO 2 for Microbiological Stabilization of Wine. Compr Rev Food Sci Food Saf 2019; 18:455-479. [PMID: 33336947 DOI: 10.1111/1541-4337.12422] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 01/15/2023]
Abstract
The use of sulfur dioxide (SO2 ) as wine additive is able to ensure both antioxidant protection and microbiological stability. In spite of these undeniable advantages, in the last two decades the presence of SO2 in wine has raised concerns about potential adverse clinical effects in sensitive individuals. The winemaking industry has followed the general trend towards the reduction of SO2 concentrations in food, by expressing at the same time the need for alternative control methods allowing reduction or even elimination of SO2. In the light of this, research has been strongly oriented toward the study of alternatives to the use of SO2 in wine. Most of the studies have focused on methods able to replace the antimicrobial activity of SO2 . This review article gives a comprehensive overview of the current state-of-the-art about the chemical additives and the innovative physical techniques that have been proposed for this purpose. After a focus on the chemistry and properties of SO2 in wine, as well as on wine spoilage and on the conventional methods used for the microbiological stabilization of wine, recent advances on alternative methods proposed to replace the antimicrobial activity of SO2 in winemaking are presented and discussed. Even though many of the alternatives to SO2 showed good efficacy, nowadays no other physical technique or additive can deliver the efficacy and broad spectrum of action as SO2 (both antioxidant and antimicrobial), therefore the alternative methods should be considered a complement to SO2 in low-sulfite winemaking, rather than being seen as its substitutes.
Collapse
Affiliation(s)
- Maria Tiziana Lisanti
- Dipt. di Agraria -Sezione di Scienze della Vigna e del Vino, Univ. degli Studi di Napoli Federico II, viale Italia 83100 Avellino, Italy
| | - Giuseppe Blaiotta
- Dipt. di Agraria -Sezione di Scienze della Vigna e del Vino, Univ. degli Studi di Napoli Federico II, viale Italia 83100 Avellino, Italy
| | - Claudia Nioi
- Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Inst. des Sciences de la Vigne et du Vin CS 50008 - 210, chemin de Leysotte - 33882 - Villenave d'Ornon cedex -France
| | - Luigi Moio
- Dipt. di Agraria -Sezione di Scienze della Vigna e del Vino, Univ. degli Studi di Napoli Federico II, viale Italia 83100 Avellino, Italy
| |
Collapse
|
15
|
Comparison of high pressure treatment with conventional red wine aging processes: impact on phenolic composition. Food Res Int 2019; 116:223-231. [DOI: 10.1016/j.foodres.2018.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/01/2018] [Accepted: 08/04/2018] [Indexed: 11/20/2022]
|
16
|
Christofi S, Malliaris D, Kotseridis Y, Panagou E, Proxenia N, Kallithraka S. Effect of high hydrostatic pressure on selected red wine quality parameters. BIO WEB OF CONFERENCES 2019. [DOI: 10.1051/bioconf/20191202015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The aim of this work was to examine the possible use of High Hydrostatic Pressure (HHP) as an alternative method for wine preservation, which could also lead to the production of wines with reduced amounts of SO2. For this purpose, red wine samples containing 0 ppm, 30 ppm, 60 ppm and 100 ppm of sulphur dioxide (SO2) were subjected to pressure of 350 MPa for 10 min at 8 ∘C. A second set of samples containing only SO2 was used as control. Colour parameters, acetic acid, total anthocyanin and phenolic contents and antioxidant activity were determined over a period of twelve months. During the first four months, most of the differences observed regarding the chemical composition of the pressurized and unpressurized wines were not statistically significant. However, after the period of six months, the pressurized samples in general were characterized by higher average values % yellow colour and acetic acid and lower of % red colour, total anthocyanin and phenolic content compared to the non-pressurized ones. The results obtained could be a possible indication that HHP could accelerate the polymerization reactions reducing the time needed for wine ageing. HHP combined with reduced SO2 contents might be a promising technology for wine industry.
Collapse
|
17
|
He Y, Wen L, Yu H, Zheng F, Wang Z, Xu X, Zhang H, Cao Y, Wang B, Chu B, Hao J. Effects of high hydrostatic pressure-assisted organic acids on the copigmentation of Vitis amurensis Rupr anthocyanins. Food Chem 2018; 268:15-26. [DOI: 10.1016/j.foodchem.2018.06.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/04/2018] [Accepted: 06/11/2018] [Indexed: 12/31/2022]
|
18
|
Liu Y, He F, Shi Y, Zhang B, Duan CQ. Effect of the high pressure treatments on the physicochemical properties of the young red wines supplemented with pyruvic acid. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Gonçalves FJ, Fernandes PA, Wessel DF, Cardoso SM, Rocha SM, Coimbra MA. Interaction of wine mannoproteins and arabinogalactans with anthocyanins. Food Chem 2018; 243:1-10. [DOI: 10.1016/j.foodchem.2017.09.097] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
|
20
|
Dias J, Coelho P, Alvarenga NB, Duarte RV, Saraiva JA. Evaluation of the impact of high pressure on the storage of filled traditional chocolates. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Influence of High Hydrostatic Pressure Technology on Wine Chemical and Sensorial Characteristics: Potentialities and Drawbacks. ADVANCES IN FOOD AND NUTRITION RESEARCH 2017. [PMID: 28427533 DOI: 10.1016/bs.afnr.2017.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
During last years, scientific research on high hydrostatic pressure (HHP) as a nonthermal processing technology for preservation or aging of wine has increased substantially. HHP between 200 and 500MPa is able to inactivate bacteria and yeasts in red and white wines, suggesting that it may be used for wine preservation. However, these treatments have been shown to promote changes on sensorial and physicochemical characteristics in both red and white wines, not immediately in the first month, but along storage. The changes are observed in wine color, aroma, and taste due mainly to reactions of phenolic compounds, sugars, and proteins. These reactions have been associated with those observed during wine aging, leading to aged-like wine characteristics perceived by sensorial analysis. This chapter will present the influence of HHP technology on wine chemical and sensorial characteristics, criticaly discussing its potentialities and drawbacks. The appropriate use of HHP, based on the scientific knowledge of the reactions occuring in wine promoted by HHP, will allow to exploit this technology for wine production achieving distinct characteristics to address particular market and consumer demands.
Collapse
|
22
|
Tian Y, Huang J, Xie T, Huang L, Zhuang W, Zheng Y, Zheng B. Oenological characteristics, amino acids and volatile profiles of Hongqu rice wines during pottery storage: Effects of high hydrostatic pressure processing. Food Chem 2016; 203:456-464. [DOI: 10.1016/j.foodchem.2016.02.116] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 11/28/2022]
|